11.4OpenCV_图像预处理习题02
1.身份证号码识别(结果:身份证号识别结果为:911124198108030024)
import cv2
import numpy as np
import paddlehub as hubdef get_text():img = cv2.imread("images1/images/shenfen03.jpg")# 灰度化gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 高斯gs_img = cv2.GaussianBlur(gray_img, (9, 9), 0)# 腐蚀ero_img = cv2.erode(gs_img, np.ones((11, 11), np.uint8))# 边缘cany_img = cv2.Canny(ero_img, 70, 300)cv2.imshow("Canny Image", cany_img)# 轮廓contours, _ = cv2.findContours(cany_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 创建一个与原始图像同样大小的黑色图像contour_img = np.zeros_like(img)# 在黑色图像上绘制轮廓cv2.drawContours(contour_img, contours, -1, (255, 255, 255), 2)# 显示轮廓图像cv2.imshow("Contours", contour_img)for contour in contours:x, y, w, h = cv2.boundingRect(contour)print(w,h)if w > 200 and h < 70:cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)out_img = img[y:y + h, x:x + w]# # 绘制所有轮廓的矩形框# for contour in contours:# x, y, w, h = cv2.boundingRect(contour)# # 移除条件判断,为每个轮廓绘制矩形框# cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)cv2.imshow("title", img)# 显示原始图像上的矩形cv2.imshow("title", out_img)cv2.waitKey(0)#加载模型ocr = hub.Module(name="chinese_ocr_db_crnn_server")#识别文本results = ocr.recognize_text(images=[out_img])for result in results:data = result['data']for x in data:print('文本: ', x['text'])cv2.destroyAllWindows()if __name__ == "__main__":get_text()
2.车牌识别
import cv2
import numpy as np
import paddlehub as hubdef get_text():img = cv2.imread("images1/images/car6.png")# 灰度化gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 顶帽eroded = cv2.morphologyEx(gray_img, cv2.MORPH_TOPHAT, np.ones((9,9), np.uint8))# 高斯gs_img = cv2.GaussianBlur(eroded, (9, 9), 2)# 边缘cany_img = cv2.Canny(gs_img, 170, 180)# 膨胀eroded2 = cv2.dilate(cany_img,np.ones((17,17), np.uint8), iterations=2)# 轮廓contours, _ = cv2.findContours(eroded2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 创建一个与原始图像同样大小的黑色图像contour_img = np.zeros_like(img)# 在黑色图像上绘制轮廓cv2.drawContours(contour_img, contours, -1, (255, 255, 255), 2)# 显示轮廓图像cv2.imshow("Contours", contour_img)for contour in contours:x, y, w, h = cv2.boundingRect(contour)print(w,h)if w > 20 and h > 20:cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)out_img = img[y:y + h, x:x + w]cv2.imshow("title", out_img)cv2.waitKey(0)cv2.destroyAllWindows()# # 绘制所有轮廓的矩形框# for contour in contours:# x, y, w, h = cv2.boundingRect(contour)# # 移除条件判断,为每个轮廓绘制矩形框# cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)# cv2.imshow("title", img)# 显示原始图像上的矩形#加载模型ocr = hub.Module(name="chinese_ocr_db_crnn_server")#识别文本results = ocr.recognize_text(images=[out_img])for result in results:data = result['data']for x in data:print('文本: ', x['text'])if __name__ == "__main__":get_text()相关文章:
11.4OpenCV_图像预处理习题02
1.身份证号码识别(结果:身份证号识别结果为:911124198108030024) import cv2 import numpy as np import paddlehub as hubdef get_text():img cv2.imread("images1/images/shenfen03.jpg")# 灰度化gray_img cv2.cvt…...
go的template示例
模板定义: type Config struct {{{- $len : len .DbConfigs -}}{{- $i : 0 -}}{{- range $key, $value : .DbConfigs}}{{title $key}} *DbConfig "yaml:\"{{lower $key}}\"" {{if lt $i (sub $len 1)}},{{end}}{{- $i add $i 1 -}}{{- end…...
『YOLO』| 断点训练、解决训练中断异常情况
文章目录 方法一方法二 当yolo在训练的时候,如果训练中断或者出现异常,可通过修改代码,从上一次断掉处重新训练,实现断点续训。 方法一 第一种方法: 按照官方给出的恢复训练代码,用yolo命令格式ÿ…...
MQTT+Disruptor 提高物联网高并发
基于springboot2.5.7 废话不多说,直接上干货: Slf4j Configuration EnableConfigurationProperties(MqttProperties.class) IntegrationComponentScan(basePackages {"扫描包路径","扫描包路径"}) public class MqttAutoConfig {…...
SpringBoot项目集成ONLYOFFICE
ONLYOFFICE 文档8.2版本已发布:PDF 协作编辑、改进界面、性能优化、表格中的 RTL 支持等更新 文章目录 前言ONLYOFFICE 产品简介功能与特点Spring Boot 项目中集成 OnlyOffice1. 环境准备2. 部署OnlyOffice Document Server3. 配置Spring Boot项目4. 实现文档编辑功…...
用于nodejs的开源违禁词检测工具 JavaScript node-word-detection
地址 : https://www.npmjs.com/package/node-word-detection github地址: https://github.com/xiaobaidadada/node-word-detection 非常节省内存的轻量级快速违禁词、词典库 检测工具 、 50万个词大约需要300MB内存、被检测的文本100字内结果在1毫秒左右。本项目没有提供词库请…...
FFmpeg 4.3 音视频-多路H265监控录放C++开发十二:在屏幕上显示多路视频播放,可以有不同的分辨率,格式和帧率。
上图是在安防领域的要求,一般都是一个屏幕上有显示多个摄像头捕捉到的画面,这一节,我们是从文件中读取多个文件,显示在屏幕上。...
Linux权限问题(账号切换,权限,粘滞位)
1.什么是权限? 在Linux下有两种用户,分别是超级用户(root)和普通用户。超级用户可以在Linux下做任何事情,几乎不受限制,而普通用户一般只能在自己的工作目录下(/home/xxx)工作&#…...
el-upload,上传文件,后端提示信息,前端需要再次重新上传(不用重新选择文件)
1.el-upload 上传附件: <el-uploadref"upload":action"upload.url ?updateSupport upload.updateSupport":auto-upload"false":disabled"upload.isUploading":headers"upload.headers":limit"1"…...
数字信号处理Python示例(5)使用实指数函数仿真PN结二极管的正向特性
文章目录 前言一、二极管的电流-电压关系——Shockley方程二、PN结二极管正向特性的Python仿真三、仿真结果分析写在后面的话 前言 使用Python代码仿真了描述二极管的电流-电压关系的Shockley方程,对仿真结果进行了分析,说明在正向偏置区域,…...
ctfshow(89,90,92,93)--PHP特性--intval函数
Web89 源代码: include("flag.php"); highlight_file(__FILE__);if(isset($_GET[num])){$num $_GET[num];if(preg_match("/[0-9]/", $num)){die("no no no!");}if(intval($num)){echo $flag;} }审计 GET传参num。 如果在参数num中…...
构建ubuntu22.04.4私有源服务以及配置ubuntu私有源
构建ubuntu22.04.4私有源服务以及配置ubuntu私有源 一、环境说明1.1 私有源服务器1.2 客户机二 、构建私有源服务2.1 服务构建2.2 发布新的deb包到源服务器1. 准备新的 `.deb` 包2. 将 `.deb` 包添加到仓库目录3. 更新 `Packages` 文件4. 更新仓库的发布文件(可选)5. 通知客户…...
模块功能的描述方法
目录 行为描述方法 语句块 过程赋值语句 高级程序语句 循环语句 数据流描述 结构描述 混合描述方法 module 模块名(端口列表); // 模块声明// 端口定义input [数据类型] [位宽] 输入端口列表; output [数据类型] [位宽] 输出端口列表; inout [数据类…...
【WPF】MatrixTransform类
【WPF】MatrixTransform类 主要特性使用场景示例 在WPF(Windows Presentation Foundation)中,MatrixTransform 类是用于表示一个仿射变换的类,它允许开发者通过一个矩阵来定义一个二维空间中的线性变换。这种变换可以包括平移&…...
【C++】继承的理解
1.继承的概念和定义 1.1继承的概念 继承 (inheritance) 机制是面向对象程序设计 使代码可以复用 的最重要的手段,它允许程序员在 保 持原有类特性的基础上进行扩展 ,增加功能,这样产生新的类,称派生类。继承 呈现了面向对象 程序…...
day50 图论章节刷题Part02(99.岛屿数量 深搜、99.岛屿数量 广搜、100.岛屿的最大面积)
前言:前段时间论文开题落下了很多进度,今天开始会尽快赶上 99.岛屿数量 深搜 思路:对地图进行遍历遇到一个没有遍历过的陆地节点,计数器就1,并把该节点所能遍历到的陆地都标记上;遇到标记过的陆地节点和海…...
超详细从基准将VMware ESXi 升级到 vSphere 6.7U1教程
哈喽大家好,欢迎来到虚拟化时代君(XNHCYL),收不到通知请将我点击星标! “ 大家好,我是虚拟化时代君,一位潜心于互联网的技术宅男。这里每天为你分享各种你感兴趣的技术、教程、软件、资源、福…...
华为OD机试 - 打印机队列 - 优先队列(Java 2024 E卷 200分)
华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(E卷D卷A卷B卷C卷)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加…...
MatrixOne 助力西安天能替换MySQL+MongoDB+ES打造一体化物联网平台
物联网(IoT)时代,企业正以前所未有的速度加快数字化转型。西安天能软件科技有限责任公司(Skyable)作为工业物联网领域的领先企业,携手MatrixOne,共同构建新一代一体化物联网平台,实现…...
正则表达式---元字符
简介 正则表达式分为两种语法:POSIX标准的语法,Perl语法。 正则表达式的POSIX规范,分为基本型正则表达式(Basic Regular Expression, BRE),扩展型正则表达式(Extended Regular Expression&…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
