当前位置: 首页 > news >正文

11.4OpenCV_图像预处理习题02

1.身份证号码识别(结果:身份证号识别结果为:911124198108030024)

import cv2
import numpy as np
import paddlehub as hubdef get_text():img = cv2.imread("images1/images/shenfen03.jpg")# 灰度化gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 高斯gs_img = cv2.GaussianBlur(gray_img, (9, 9), 0)# 腐蚀ero_img = cv2.erode(gs_img, np.ones((11, 11), np.uint8))# 边缘cany_img = cv2.Canny(ero_img, 70, 300)cv2.imshow("Canny Image", cany_img)# 轮廓contours, _ = cv2.findContours(cany_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 创建一个与原始图像同样大小的黑色图像contour_img = np.zeros_like(img)# 在黑色图像上绘制轮廓cv2.drawContours(contour_img, contours, -1, (255, 255, 255), 2)# 显示轮廓图像cv2.imshow("Contours", contour_img)for contour in contours:x, y, w, h = cv2.boundingRect(contour)print(w,h)if w > 200 and h < 70:cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)out_img = img[y:y + h, x:x + w]# # 绘制所有轮廓的矩形框# for contour in contours:#     x, y, w, h = cv2.boundingRect(contour)#     # 移除条件判断,为每个轮廓绘制矩形框#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)cv2.imshow("title", img)# 显示原始图像上的矩形cv2.imshow("title", out_img)cv2.waitKey(0)#加载模型ocr = hub.Module(name="chinese_ocr_db_crnn_server")#识别文本results = ocr.recognize_text(images=[out_img])for result in results:data = result['data']for x in data:print('文本: ', x['text'])cv2.destroyAllWindows()if __name__ == "__main__":get_text()

2.车牌识别

import cv2
import numpy as np
import paddlehub as hubdef get_text():img = cv2.imread("images1/images/car6.png")# 灰度化gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 顶帽eroded = cv2.morphologyEx(gray_img, cv2.MORPH_TOPHAT, np.ones((9,9), np.uint8))# 高斯gs_img = cv2.GaussianBlur(eroded, (9, 9), 2)# 边缘cany_img = cv2.Canny(gs_img, 170, 180)# 膨胀eroded2 = cv2.dilate(cany_img,np.ones((17,17), np.uint8), iterations=2)# 轮廓contours, _ = cv2.findContours(eroded2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 创建一个与原始图像同样大小的黑色图像contour_img = np.zeros_like(img)# 在黑色图像上绘制轮廓cv2.drawContours(contour_img, contours, -1, (255, 255, 255), 2)# 显示轮廓图像cv2.imshow("Contours", contour_img)for contour in contours:x, y, w, h = cv2.boundingRect(contour)print(w,h)if w > 20 and h > 20:cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)out_img = img[y:y + h, x:x + w]cv2.imshow("title", out_img)cv2.waitKey(0)cv2.destroyAllWindows()# # 绘制所有轮廓的矩形框# for contour in contours:#     x, y, w, h = cv2.boundingRect(contour)#     # 移除条件判断,为每个轮廓绘制矩形框#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)# cv2.imshow("title", img)# 显示原始图像上的矩形#加载模型ocr = hub.Module(name="chinese_ocr_db_crnn_server")#识别文本results = ocr.recognize_text(images=[out_img])for result in results:data = result['data']for x in data:print('文本: ', x['text'])if __name__ == "__main__":get_text()

相关文章:

11.4OpenCV_图像预处理习题02

1.身份证号码识别&#xff08;结果&#xff1a;身份证号识别结果为&#xff1a;911124198108030024&#xff09; import cv2 import numpy as np import paddlehub as hubdef get_text():img cv2.imread("images1/images/shenfen03.jpg")# 灰度化gray_img cv2.cvt…...

go的template示例

模板定义&#xff1a; type Config struct {{{- $len : len .DbConfigs -}}{{- $i : 0 -}}{{- range $key, $value : .DbConfigs}}{{title $key}} *DbConfig "yaml:\"{{lower $key}}\"" {{if lt $i (sub $len 1)}},{{end}}{{- $i add $i 1 -}}{{- end…...

『YOLO』| 断点训练、解决训练中断异常情况

文章目录 方法一方法二 当yolo在训练的时候&#xff0c;如果训练中断或者出现异常&#xff0c;可通过修改代码&#xff0c;从上一次断掉处重新训练&#xff0c;实现断点续训。 方法一 第一种方法&#xff1a; 按照官方给出的恢复训练代码&#xff0c;用yolo命令格式&#xff…...

MQTT+Disruptor 提高物联网高并发

基于springboot2.5.7 废话不多说&#xff0c;直接上干货&#xff1a; Slf4j Configuration EnableConfigurationProperties(MqttProperties.class) IntegrationComponentScan(basePackages {"扫描包路径","扫描包路径"}) public class MqttAutoConfig {…...

SpringBoot项目集成ONLYOFFICE

ONLYOFFICE 文档8.2版本已发布&#xff1a;PDF 协作编辑、改进界面、性能优化、表格中的 RTL 支持等更新 文章目录 前言ONLYOFFICE 产品简介功能与特点Spring Boot 项目中集成 OnlyOffice1. 环境准备2. 部署OnlyOffice Document Server3. 配置Spring Boot项目4. 实现文档编辑功…...

用于nodejs的开源违禁词检测工具 JavaScript node-word-detection

地址 : https://www.npmjs.com/package/node-word-detection github地址: https://github.com/xiaobaidadada/node-word-detection 非常节省内存的轻量级快速违禁词、词典库 检测工具 、 50万个词大约需要300MB内存、被检测的文本100字内结果在1毫秒左右。本项目没有提供词库请…...

FFmpeg 4.3 音视频-多路H265监控录放C++开发十二:在屏幕上显示多路视频播放,可以有不同的分辨率,格式和帧率。

上图是在安防领域的要求&#xff0c;一般都是一个屏幕上有显示多个摄像头捕捉到的画面&#xff0c;这一节&#xff0c;我们是从文件中读取多个文件&#xff0c;显示在屏幕上。...

Linux权限问题(账号切换,权限,粘滞位)

1.什么是权限&#xff1f; 在Linux下有两种用户&#xff0c;分别是超级用户&#xff08;root&#xff09;和普通用户。超级用户可以在Linux下做任何事情&#xff0c;几乎不受限制&#xff0c;而普通用户一般只能在自己的工作目录下&#xff08;/home/xxx&#xff09;工作&#…...

el-upload,上传文件,后端提示信息,前端需要再次重新上传(不用重新选择文件)

1.el-upload 上传附件&#xff1a; <el-uploadref"upload":action"upload.url ?updateSupport upload.updateSupport":auto-upload"false":disabled"upload.isUploading":headers"upload.headers":limit"1"…...

数字信号处理Python示例(5)使用实指数函数仿真PN结二极管的正向特性

文章目录 前言一、二极管的电流-电压关系——Shockley方程二、PN结二极管正向特性的Python仿真三、仿真结果分析写在后面的话 前言 使用Python代码仿真了描述二极管的电流-电压关系的Shockley方程&#xff0c;对仿真结果进行了分析&#xff0c;说明在正向偏置区域&#xff0c;…...

ctfshow(89,90,92,93)--PHP特性--intval函数

Web89 源代码&#xff1a; include("flag.php"); highlight_file(__FILE__);if(isset($_GET[num])){$num $_GET[num];if(preg_match("/[0-9]/", $num)){die("no no no!");}if(intval($num)){echo $flag;} }审计 GET传参num。 如果在参数num中…...

构建ubuntu22.04.4私有源服务以及配置ubuntu私有源

构建ubuntu22.04.4私有源服务以及配置ubuntu私有源 一、环境说明1.1 私有源服务器1.2 客户机二 、构建私有源服务2.1 服务构建2.2 发布新的deb包到源服务器1. 准备新的 `.deb` 包2. 将 `.deb` 包添加到仓库目录3. 更新 `Packages` 文件4. 更新仓库的发布文件(可选)5. 通知客户…...

模块功能的描述方法

目录 行为描述方法 语句块 过程赋值语句 高级程序语句 循环语句 数据流描述 结构描述 混合描述方法 module 模块名(端口列表); // 模块声明// 端口定义input [数据类型] [位宽] 输入端口列表; output [数据类型] [位宽] 输出端口列表; inout [数据类…...

【WPF】MatrixTransform类

【WPF】MatrixTransform类 主要特性使用场景示例 在WPF&#xff08;Windows Presentation Foundation&#xff09;中&#xff0c;MatrixTransform 类是用于表示一个仿射变换的类&#xff0c;它允许开发者通过一个矩阵来定义一个二维空间中的线性变换。这种变换可以包括平移&…...

【C++】继承的理解

1.继承的概念和定义 1.1继承的概念 继承 (inheritance) 机制是面向对象程序设计 使代码可以复用 的最重要的手段&#xff0c;它允许程序员在 保 持原有类特性的基础上进行扩展 &#xff0c;增加功能&#xff0c;这样产生新的类&#xff0c;称派生类。继承 呈现了面向对象 程序…...

day50 图论章节刷题Part02(99.岛屿数量 深搜、99.岛屿数量 广搜、100.岛屿的最大面积)

前言&#xff1a;前段时间论文开题落下了很多进度&#xff0c;今天开始会尽快赶上 99.岛屿数量 深搜 思路&#xff1a;对地图进行遍历遇到一个没有遍历过的陆地节点&#xff0c;计数器就1&#xff0c;并把该节点所能遍历到的陆地都标记上&#xff1b;遇到标记过的陆地节点和海…...

超详细从基准将VMware ESXi 升级到 vSphere 6.7U1教程

哈喽大家好&#xff0c;欢迎来到虚拟化时代君&#xff08;XNHCYL&#xff09;&#xff0c;收不到通知请将我点击星标&#xff01; “ 大家好&#xff0c;我是虚拟化时代君&#xff0c;一位潜心于互联网的技术宅男。这里每天为你分享各种你感兴趣的技术、教程、软件、资源、福…...

华为OD机试 - 打印机队列 - 优先队列(Java 2024 E卷 200分)

华为OD机试 2024E卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&#xff08;E卷D卷A卷B卷C卷&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;私信哪吒&#xff0c;备注华为OD&#xff0c;加…...

MatrixOne 助力西安天能替换MySQL+MongoDB+ES打造一体化物联网平台

物联网&#xff08;IoT&#xff09;时代&#xff0c;企业正以前所未有的速度加快数字化转型。西安天能软件科技有限责任公司&#xff08;Skyable&#xff09;作为工业物联网领域的领先企业&#xff0c;携手MatrixOne&#xff0c;共同构建新一代一体化物联网平台&#xff0c;实现…...

正则表达式---元字符

简介 正则表达式分为两种语法&#xff1a;POSIX标准的语法&#xff0c;Perl语法。 正则表达式的POSIX规范&#xff0c;分为基本型正则表达式&#xff08;Basic Regular Expression, BRE&#xff09;&#xff0c;扩展型正则表达式&#xff08;Extended Regular Expression&…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...