11.4OpenCV_图像预处理习题02
1.身份证号码识别(结果:身份证号识别结果为:911124198108030024)
import cv2
import numpy as np
import paddlehub as hubdef get_text():img = cv2.imread("images1/images/shenfen03.jpg")# 灰度化gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 高斯gs_img = cv2.GaussianBlur(gray_img, (9, 9), 0)# 腐蚀ero_img = cv2.erode(gs_img, np.ones((11, 11), np.uint8))# 边缘cany_img = cv2.Canny(ero_img, 70, 300)cv2.imshow("Canny Image", cany_img)# 轮廓contours, _ = cv2.findContours(cany_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 创建一个与原始图像同样大小的黑色图像contour_img = np.zeros_like(img)# 在黑色图像上绘制轮廓cv2.drawContours(contour_img, contours, -1, (255, 255, 255), 2)# 显示轮廓图像cv2.imshow("Contours", contour_img)for contour in contours:x, y, w, h = cv2.boundingRect(contour)print(w,h)if w > 200 and h < 70:cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)out_img = img[y:y + h, x:x + w]# # 绘制所有轮廓的矩形框# for contour in contours:# x, y, w, h = cv2.boundingRect(contour)# # 移除条件判断,为每个轮廓绘制矩形框# cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)cv2.imshow("title", img)# 显示原始图像上的矩形cv2.imshow("title", out_img)cv2.waitKey(0)#加载模型ocr = hub.Module(name="chinese_ocr_db_crnn_server")#识别文本results = ocr.recognize_text(images=[out_img])for result in results:data = result['data']for x in data:print('文本: ', x['text'])cv2.destroyAllWindows()if __name__ == "__main__":get_text()
2.车牌识别
import cv2
import numpy as np
import paddlehub as hubdef get_text():img = cv2.imread("images1/images/car6.png")# 灰度化gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 顶帽eroded = cv2.morphologyEx(gray_img, cv2.MORPH_TOPHAT, np.ones((9,9), np.uint8))# 高斯gs_img = cv2.GaussianBlur(eroded, (9, 9), 2)# 边缘cany_img = cv2.Canny(gs_img, 170, 180)# 膨胀eroded2 = cv2.dilate(cany_img,np.ones((17,17), np.uint8), iterations=2)# 轮廓contours, _ = cv2.findContours(eroded2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 创建一个与原始图像同样大小的黑色图像contour_img = np.zeros_like(img)# 在黑色图像上绘制轮廓cv2.drawContours(contour_img, contours, -1, (255, 255, 255), 2)# 显示轮廓图像cv2.imshow("Contours", contour_img)for contour in contours:x, y, w, h = cv2.boundingRect(contour)print(w,h)if w > 20 and h > 20:cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)out_img = img[y:y + h, x:x + w]cv2.imshow("title", out_img)cv2.waitKey(0)cv2.destroyAllWindows()# # 绘制所有轮廓的矩形框# for contour in contours:# x, y, w, h = cv2.boundingRect(contour)# # 移除条件判断,为每个轮廓绘制矩形框# cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)# cv2.imshow("title", img)# 显示原始图像上的矩形#加载模型ocr = hub.Module(name="chinese_ocr_db_crnn_server")#识别文本results = ocr.recognize_text(images=[out_img])for result in results:data = result['data']for x in data:print('文本: ', x['text'])if __name__ == "__main__":get_text()相关文章:
11.4OpenCV_图像预处理习题02
1.身份证号码识别(结果:身份证号识别结果为:911124198108030024) import cv2 import numpy as np import paddlehub as hubdef get_text():img cv2.imread("images1/images/shenfen03.jpg")# 灰度化gray_img cv2.cvt…...
go的template示例
模板定义: type Config struct {{{- $len : len .DbConfigs -}}{{- $i : 0 -}}{{- range $key, $value : .DbConfigs}}{{title $key}} *DbConfig "yaml:\"{{lower $key}}\"" {{if lt $i (sub $len 1)}},{{end}}{{- $i add $i 1 -}}{{- end…...
『YOLO』| 断点训练、解决训练中断异常情况
文章目录 方法一方法二 当yolo在训练的时候,如果训练中断或者出现异常,可通过修改代码,从上一次断掉处重新训练,实现断点续训。 方法一 第一种方法: 按照官方给出的恢复训练代码,用yolo命令格式ÿ…...
MQTT+Disruptor 提高物联网高并发
基于springboot2.5.7 废话不多说,直接上干货: Slf4j Configuration EnableConfigurationProperties(MqttProperties.class) IntegrationComponentScan(basePackages {"扫描包路径","扫描包路径"}) public class MqttAutoConfig {…...
SpringBoot项目集成ONLYOFFICE
ONLYOFFICE 文档8.2版本已发布:PDF 协作编辑、改进界面、性能优化、表格中的 RTL 支持等更新 文章目录 前言ONLYOFFICE 产品简介功能与特点Spring Boot 项目中集成 OnlyOffice1. 环境准备2. 部署OnlyOffice Document Server3. 配置Spring Boot项目4. 实现文档编辑功…...
用于nodejs的开源违禁词检测工具 JavaScript node-word-detection
地址 : https://www.npmjs.com/package/node-word-detection github地址: https://github.com/xiaobaidadada/node-word-detection 非常节省内存的轻量级快速违禁词、词典库 检测工具 、 50万个词大约需要300MB内存、被检测的文本100字内结果在1毫秒左右。本项目没有提供词库请…...
FFmpeg 4.3 音视频-多路H265监控录放C++开发十二:在屏幕上显示多路视频播放,可以有不同的分辨率,格式和帧率。
上图是在安防领域的要求,一般都是一个屏幕上有显示多个摄像头捕捉到的画面,这一节,我们是从文件中读取多个文件,显示在屏幕上。...
Linux权限问题(账号切换,权限,粘滞位)
1.什么是权限? 在Linux下有两种用户,分别是超级用户(root)和普通用户。超级用户可以在Linux下做任何事情,几乎不受限制,而普通用户一般只能在自己的工作目录下(/home/xxx)工作&#…...
el-upload,上传文件,后端提示信息,前端需要再次重新上传(不用重新选择文件)
1.el-upload 上传附件: <el-uploadref"upload":action"upload.url ?updateSupport upload.updateSupport":auto-upload"false":disabled"upload.isUploading":headers"upload.headers":limit"1"…...
数字信号处理Python示例(5)使用实指数函数仿真PN结二极管的正向特性
文章目录 前言一、二极管的电流-电压关系——Shockley方程二、PN结二极管正向特性的Python仿真三、仿真结果分析写在后面的话 前言 使用Python代码仿真了描述二极管的电流-电压关系的Shockley方程,对仿真结果进行了分析,说明在正向偏置区域,…...
ctfshow(89,90,92,93)--PHP特性--intval函数
Web89 源代码: include("flag.php"); highlight_file(__FILE__);if(isset($_GET[num])){$num $_GET[num];if(preg_match("/[0-9]/", $num)){die("no no no!");}if(intval($num)){echo $flag;} }审计 GET传参num。 如果在参数num中…...
构建ubuntu22.04.4私有源服务以及配置ubuntu私有源
构建ubuntu22.04.4私有源服务以及配置ubuntu私有源 一、环境说明1.1 私有源服务器1.2 客户机二 、构建私有源服务2.1 服务构建2.2 发布新的deb包到源服务器1. 准备新的 `.deb` 包2. 将 `.deb` 包添加到仓库目录3. 更新 `Packages` 文件4. 更新仓库的发布文件(可选)5. 通知客户…...
模块功能的描述方法
目录 行为描述方法 语句块 过程赋值语句 高级程序语句 循环语句 数据流描述 结构描述 混合描述方法 module 模块名(端口列表); // 模块声明// 端口定义input [数据类型] [位宽] 输入端口列表; output [数据类型] [位宽] 输出端口列表; inout [数据类…...
【WPF】MatrixTransform类
【WPF】MatrixTransform类 主要特性使用场景示例 在WPF(Windows Presentation Foundation)中,MatrixTransform 类是用于表示一个仿射变换的类,它允许开发者通过一个矩阵来定义一个二维空间中的线性变换。这种变换可以包括平移&…...
【C++】继承的理解
1.继承的概念和定义 1.1继承的概念 继承 (inheritance) 机制是面向对象程序设计 使代码可以复用 的最重要的手段,它允许程序员在 保 持原有类特性的基础上进行扩展 ,增加功能,这样产生新的类,称派生类。继承 呈现了面向对象 程序…...
day50 图论章节刷题Part02(99.岛屿数量 深搜、99.岛屿数量 广搜、100.岛屿的最大面积)
前言:前段时间论文开题落下了很多进度,今天开始会尽快赶上 99.岛屿数量 深搜 思路:对地图进行遍历遇到一个没有遍历过的陆地节点,计数器就1,并把该节点所能遍历到的陆地都标记上;遇到标记过的陆地节点和海…...
超详细从基准将VMware ESXi 升级到 vSphere 6.7U1教程
哈喽大家好,欢迎来到虚拟化时代君(XNHCYL),收不到通知请将我点击星标! “ 大家好,我是虚拟化时代君,一位潜心于互联网的技术宅男。这里每天为你分享各种你感兴趣的技术、教程、软件、资源、福…...
华为OD机试 - 打印机队列 - 优先队列(Java 2024 E卷 200分)
华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(E卷D卷A卷B卷C卷)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加…...
MatrixOne 助力西安天能替换MySQL+MongoDB+ES打造一体化物联网平台
物联网(IoT)时代,企业正以前所未有的速度加快数字化转型。西安天能软件科技有限责任公司(Skyable)作为工业物联网领域的领先企业,携手MatrixOne,共同构建新一代一体化物联网平台,实现…...
正则表达式---元字符
简介 正则表达式分为两种语法:POSIX标准的语法,Perl语法。 正则表达式的POSIX规范,分为基本型正则表达式(Basic Regular Expression, BRE),扩展型正则表达式(Extended Regular Expression&…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
