RGB图像,排列方式NHWC适合CPU计算,NCHW适合GPU计算
之前写过笔记OpenCV读取图像时按照BGR的顺序HWC排列,PyTorch按照RGB的顺序CHW排列,HWC格式排列,那么内存位置计算公式是?
在比较NHWC(channels_last)和NCHW(channels_first)这两种图像数据通道格式的效率时,需要考虑具体的硬件环境和应用场景。
NCHW
plane的格式,即rrrrggggbbbb。
[
[[R R R R] [R R R R] [R R R R]],
[[G G G G] [G G G G] [G G G G]],
[[B B B B] [B B B B] [B B B B]], ]
在GPU环境中,NCHW格式通常更有效率。这是因为GPU倾向于利用并行性进行计算,而NCHW格式允许在计算卷积操作时并行处理不同通道的特征图。例如,在使用NVIDIA的cudnn库时,NCHW是原生支持的数据模式,并且在GPU中使用NCHW格式计算卷积通常比NHWC格式快。这是因为NCHW排列方式使得每个通道内的像素紧挨在一起,从而可以更有效地利用GPU的并行计算能力。
NHWC
[
[[B G R] [B G R] [B G R][B G R],
[[B G R] [B G R] [B G R][B G R],
[[B G R] [B G R] [B G R][B G R], ]
然而,在CPU环境中,NHWC格式可能更有效率。CPU指令集(如SSE或AVX)更适合沿着数据的最后一维(即C维,代表通道)进行计算。NHWC排列方式使得不同通道中的同一位置元素顺序存储,这更符合CPU的访存模式。此外,NHWC的访存局部性更好,因为每读取三个像素(对于RGB图像)就能获得一个完整的彩色像素值,从而可以立即对该像素进行计算。这更适合多核CPU运算,因为CPU的内存带宽相对较小,每个像素计算的时延较低。
因此,NHWC和NCHW哪种格式效率更高取决于具体的硬件环境和应用场景。在训练深度学习模型时,如果使用的是GPU加速,那么NCHW格式通常更合适。而在CPU中进行推理时,NHWC格式可能更有效率。此外,不同的深度学习框架对这两种格式的支持程度也可能不同。例如,TensorFlow默认使用NHWC格式,但也支持NCHW格式;而PyTorch则更倾向于使用NCHW格式。
在选择数据格式时,需要根据具体的硬件环境、应用场景以及深度学习框架的支持情况来综合考虑。
相关文章:
RGB图像,排列方式NHWC适合CPU计算,NCHW适合GPU计算
之前写过笔记OpenCV读取图像时按照BGR的顺序HWC排列,PyTorch按照RGB的顺序CHW排列,HWC格式排列,那么内存位置计算公式是? 在比较NHWC(channels_last)和NCHW(channels_first)这两种图像数据通道格式的效率时…...
布朗运动
内容来源 数理金融初步(原书第3版)Sheldon M. Ross著 冉启康译 机械工业出版社 布朗运动 定义 如果随机变量集合 X ( t ) X(t) X(t) 满足以下条件 X ( 0 ) X(0) X(0) 是一个给定的常数 对所有正数 y y y 和 t t t,随机变量 X ( y t …...
WPF+MVVM案例实战(二十二)- 制作一个侧边弹窗栏(CD类)
文章目录 1、案例效果1、侧边栏分类2、CD类侧边弹窗实现1、样式代码实现2、功能代码实现3 运行效果4、源代码获取1、案例效果 1、侧边栏分类 A类 :左侧弹出侧边栏B类 :右侧弹出侧边栏C类 :顶部弹出侧边栏D类 :底部弹出侧边栏2、CD类侧边弹窗实现 1、样式代码实现 在原有的…...
集成旺店通旗舰版售后单至MySQL数据库
旺店通旗舰版-售后单集成到MySQL的技术实现 在数据驱动的业务环境中,如何高效、准确地将旺店通旗舰奇门的数据集成到MySQL数据库,是许多企业面临的重要挑战。本文将分享一个具体的系统对接案例:旺店通旗舰版-售后单-->BI泰海-售后订单表(…...
【Linux】从零开始使用多路转接IO --- epoll
当你偶尔发现语言变得无力时, 不妨安静下来, 让沉默替你发声。 --- 里则林 --- 从零开始认识多路转接 1 epoll的作用和定位2 epoll 的接口3 epoll工作原理4 实现epollserverV1 1 epoll的作用和定位 之前提过的多路转接方案select和poll 都有致命缺点…...
爬虫学习4
from threading import Thread#创建任务 def func(name):for i in range(100):print(name,i)if __name__ __main__:#创建线程t1 Thread(targetfunc,args("1"))t2 Thread(targetfunc, args("2"))t1.start()t2.start()print("我是诛仙剑")from …...
CTF之web题集详情随手笔记
《Web安全》http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247484238&idx1&snca66551c31e37b8d726f151265fc9211&chksmc0e47a12f793f3049fefde6e9ebe9ec4e2c7626b8594511bd314783719c216bd9929962a71e6&scene21#wechat_redirect 1 WEB 1 靶场目…...
TDengine 集群能力:超越 InfluxDB 的水平扩展与开源优势
随着物联网、车联网等领域的快速发展,企业所面临的数据采集量呈爆炸式增长,这对 IT 基础设施和数据库提出了严峻挑战。传统单机版数据库逐渐无法应对高并发的数据写入和复杂的查询需求。因此,底层数据库必须具备水平扩展能力,以确…...
MATCH_DIRECT_BOOT_AWARE和MATCH_DIRECT_BOOT_UNAWARE
PackageManager.MATCH_DIRECT_BOOT_AWARE和PackageManager.MATCH_DIRECT_BOOT_UNAWARE 在Android系统中,PackageManager类提供了一些标志位,用于控制查询系统中的应用和组件时的行为。其中,MATCH_DIRECT_BOOT_AWARE和MATCH_DIRECT_BOOT_UNAWA…...
LabVIEW离心泵性能优化测试系统
开发了一套基于LabVIEW平台开发的离心泵性能优化测试系统。系统集成了数据采集、流量控制、数据存储、报表生成等功能,提供了低成本、便捷操作的解决方案,适用于工业场景中对离心泵性能的精确测评。 项目背景 随着工业化进程的加速,离心泵在…...
token和jwt区别
Token 和 JSON Web Token (JWT) 都是用于身份验证和授权的技术,但它们之间有一些重要的区别。下面是它们的主要区别和各自的特性: 1. 概念上的区别 Token: 广义概念:Token 是一个通用术语,指的是任何形式的令牌,用于在客户端和服务器之间传递身份验证和授权信息。实现方…...
新闻稿件管理:SpringBoot框架实战指南
3系统分析 3.1可行性分析 通过对本新闻稿件管理系统实行的目的初步调查和分析,提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本新闻稿件管理系统采用SSM框架,JAVA作为开发语…...
AI运动小程序开发常见问题集锦二
截止到现在写博文时,我们的AI运动识别小程序插件已经迭代了23个版本,成功应用于健身、体育、体测、AR互动等场景;为了让正在集成或者计划进行功能扩展优化的用户,少走弯路、投入更少的开发资源,针对近期的咨询问题&…...
nginx安装
下载地址 https://nginx.org/en/download.html选择 把下载好的压缩包放在 解压 tar -zxf nginx-1.27.2.tar.gz下载 yum install -y gcc-c pcre pcre-devel zlib zlib-devel openssl openssl-devel ./configuremake&&make install这样表示安装成功 接下去启动nginx…...
【Linux驱动开发】内核定时器的配置和使用
【Linux驱动开发】内核定时器的配置和使用 文章目录 Linux内核时钟定时器调用方式延时函数 应用附录:嵌入式Linux驱动开发基本步骤开发环境驱动文件编译驱动安装驱动自动创建设备节点文件 驱动开发驱动设备号地址映射,虚拟内存和硬件内存地址字符驱动旧…...
Kubernetes架构及核心组件
一、基本架构 Kubernetes集群可以被看作是一个工厂,而各个组件则是这个工厂里的不同部门: Kubernetes API服务器:就像是这个工厂的总经理,负责接收所有的请求并将它们分配给相应的部门进行处理。 etcd:就像是这个工厂的记事本,负责记录所有的配置信息和状态信息,以便其…...
Fastflow工作流系统源码
可视化工作流程审批插件,作为一款高效的企业管理工具,其核心价值在于帮助用户根据企业独特的业务模式和管理模式,灵活自定义所需的各种流程应用。这一功能极大地提升了企业的自主性和灵活性,使得企业能够迅速构建出贴合自身运营需…...
小林渗透入门:burpsuite+proxifier抓取小程序流量
目录 前提: 代理: proxifier: 步骤: bp证书安装 bp设置代理端口: proxifier设置规则: proxifier应用规则: 结果: 前提: 在介绍这两个工具具体实现方法之前࿰…...
AiPPT - 全智能 AI 一键生成 PPT
一、产品介绍 AiPPT是一款基于人工智能技术的智能演示文稿制作工具。它结合了先进的AI算法与用户友好的界面设计,旨在帮助用户快速、高效地创建出专业且富有吸引力的PPT演示文稿。AiPPT不仅能够自动排版、优化内容布局,还能根据用户输入的关键词或主题&…...
React 前端使用 Input 输入框的样式上传一个 Excel 文件并读取内容对象数组
本文讲解了关于如何在 React 前端使用 Input 输入框上传一个 Excel 文件,并读取文件内容转成 json 数据格式(对象数组)。 文章目录 1、Excel 文件展示2、完整代码3、数据结果展示4、前端样式展示5、使用 button 按钮的前端样式 1、Excel 文件…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
