当前位置: 首页 > news >正文

本地缓存与 Redis:为什么我们仍然需要本地缓存?

文章目录

  • 本地缓存与 Redis:为何仍需本地缓存?
  • 为什么需要本地缓存?
  • 多级缓存架构
    • 多级缓存的实现
  • 本地缓存的实现方式
    • 使用 `cachetools` 实现 LRUCache
    • 使用 `diskcache` 实现持久化缓存
  • 缓存装饰器实现
    • 进一步优化:缓存失效与更新
  • 小结


好的,我们可以进一步提升博文的深度和细节,以争取更高的评分。以下是经过加强和优化的版本:


本地缓存与 Redis:为何仍需本地缓存?

在现代应用开发中,缓存是提升性能的重要手段。虽然 Redis 作为一种高效的分布式缓存解决方案备受关注,但本地缓存依然在许多场景中扮演着重要角色。本文将探讨本地缓存的必要性,如何与 Redis 有效结合,以及实现多级缓存的最佳实践。

为什么需要本地缓存?

尽管 Redis 提供了强大的分布式缓存能力,但本地缓存的价值在于以下几个方面:

  1. 访问速度

    • 本地缓存直接存储在应用的内存中,访问速度极快,几乎是零延迟。这对于实时性要求高的应用尤为重要,能够显著提升用户体验。
  2. 减少网络延迟

    • 与 Redis 进行数据交互需要通过网络传输,而本地缓存则消除了这部分延迟。在高并发场景下,网络开销会对性能产生显著影响,因此通过本地缓存可以有效降低这种开销。
  3. 减轻后端压力

    • 本地缓存能够分担后端数据源(如数据库或 Redis)的请求压力,从而提高系统的整体可用性与稳定性。在负载高峰期,后端服务能够保持更好的响应能力。
  4. 数据一致性

    • 本地缓存可以作为短期存储,避免频繁访问后端系统。在某些场景下,使用本地缓存可以简化数据一致性管理的问题,尤其是在高频更新的情况下。

因此,在生产环境中,通常会将本地缓存与 Redis 结合使用,形成多级缓存架构,以提升系统的整体性能。

多级缓存架构

多级缓存是一种利用多个层次的缓存策略,以提高数据访问速度和系统性能。最基本的多级缓存架构由本地缓存和 Redis 组成。

多级缓存的实现

以下是获取数据的示例代码,使用 Python 实现本地缓存与 Redis 的结合:

import redis
from cachetools import LRUCache# 初始化 Redis 连接
redis_client = redis.StrictRedis(host='localhost', port=6379, db=0)# 初始化本地缓存(LRUCache)
local_cache = LRUCache(maxsize=1000)def get_from_cache(key):# 优先从本地缓存中查找if key in local_cache:return local_cache[key]# 本地缓存未命中,从 Redis 中查找redis_value = redis_client.get(key)if redis_value:local_cache[key] = redis_value.decode('utf-8')  # 假设存储的是字符串return local_cache[key]return None

在该示例中,首先尝试从本地缓存中查找数据。如果未找到,则请求 Redis,并将获取到的数据存储到本地缓存中,以供后续使用。

本地缓存的实现方式

在 Python 中,常见的本地缓存实现方式包括:

  1. LRUCache(来自 cachetools 库):

    • 提供基于 LRU(Least Recently Used)策略的缓存管理,操作简单,性能优秀。
  2. diskcache

    • 提供持久化缓存的解决方案,支持在磁盘上存储数据,适用于较大数据集。

使用 cachetools 实现 LRUCache

from cachetools import LRUCache# 初始化 LRUCache
local_cache = LRUCache(maxsize=1000)def cache_data(key, value):local_cache[key] = valuedef get_cached_data(key):return local_cache.get(key)

使用 diskcache 实现持久化缓存

import diskcache as dc# 初始化 DiskCache
cache = dc.Cache('cache-directory')def cache_data(key, value):cache[key] = valuedef get_cached_data(key):return cache.get(key)

缓存装饰器实现

在 Python 中,可以通过装饰器实现类似 Spring 的缓存注解功能。以下是一个简单的缓存装饰器示例:

def cacheable(func):def wrapper(*args, **kwargs):key = f"{func.__name__}:{args}"if key in local_cache:return local_cache[key]result = func(*args, **kwargs)local_cache[key] = resultreturn resultreturn wrapper@cacheable
def get_data(id):# 模拟耗时操作import timetime.sleep(1)return f"Data for {id}"

进一步优化:缓存失效与更新

在设计多级缓存时,缓存失效策略与更新机制至关重要。可以通过以下方式进行优化:

  • 定期清理:定期清除本地缓存中的过期数据,保持缓存的实时性。
  • 异步更新:当数据更新时,可以异步更新本地缓存和 Redis,确保缓存的数据是最新的。
  • 监听机制:实现数据变更的监听机制,一旦后端数据更新,及时更新或清除相关缓存。

小结

通过将本地缓存与 Redis 结合,我们能够构建高效的多级缓存架构,显著提高应用的性能和响应速度。虽然引入了更复杂的设计,但合理的实现和管理可以帮助我们有效地解决数据一致性问题。

在实践中,选择合适的本地缓存实现(如 cachetoolsdiskcache)并设计有效的缓存策略,将极大地提升系统的整体性能和用户体验。
求。

相关文章:

本地缓存与 Redis:为什么我们仍然需要本地缓存?

文章目录 本地缓存与 Redis:为何仍需本地缓存?为什么需要本地缓存?多级缓存架构多级缓存的实现 本地缓存的实现方式使用 cachetools 实现 LRUCache使用 diskcache 实现持久化缓存 缓存装饰器实现进一步优化:缓存失效与更新 小结 好…...

要在微信小程序中让一个 `view` 元素内部的文字水平垂直居中,可以使用 Flexbox 布局

文章目录 主要特点:基本用法:常用属性: 要在微信小程序中让一个 view 元素内部的文字水平垂直居中,可以使用 Flexbox 布局。以下是如何设置样式的示例: .scan-button {display: flex; /* 启用 Flexbox 布局 */justify…...

图像超分辨率、DPSRGAN

图像超分辨率(Image Super-Resolution, ISR)是一种通过增加图像的分辨率来提高其细节和清晰度的技术。这项技术在多个领域都有广泛的应用,比如视频监控、医学诊断、遥感应用等。根据搜索结果,图像超分辨率算法主要可以分为以下几类…...

124.WEB渗透测试-信息收集-ARL(15)

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:123.WEB渗透测试-信息收集-ARL(14) 点击fofa任务下发&#xff08…...

@Async注解提升Spring Boot项目中API接口并发能力

文章目录 同步调用异步调用1: 启用异步支持2: 修改 Task 类异步回调基本概念使用 Future<String>使用 CompletableFuture<String>Future<String> 和 CompletableFuture<String>区别1. 基本概念2. 主要区别同步调用 同步调用是最直接的调用方式,调用方…...

SpringBoot集成Flink-CDC

Flink CDC CDC相关介绍 CDC是什么? CDC是Change Data Capture(变更数据获取)的简称。核心思想是&#xff0c;监测并捕获数据库的变动&#xff08;包括数据或数据表的插入、更新以及删除等&#xff09;&#xff0c;将这些变更按发生的顺序完整记录下来&#xff0c;写入到MQ以…...

SQL报错注入检测方法与攻击方法

报错注入 即是注入检测方法&#xff0c;又是注入读取数据的方法 攻击者在判断一个参数是否存在SQL注入漏洞时&#xff0c;会拼接单引号&#xff0c;反斜杠字符&#xff0c;如果显示语法报错&#xff0c;证明这个位置具有SQL注入漏洞&#xff0c;也可以通过整数溢出来判断&…...

Linux内核编程(十九)SPI子系统的应用与驱动编写

本文目录 一、 SPI驱动框架图二、编写SPI驱动device框架三、编写SPI驱动driver框架四、实验一编写mcp2515驱动1. 注册字符设备或杂项设备框架2. SPI写数据3. SPI读寄存器数据 4. MCP2515相关配置 对于SPI基础知识这里不做过多讲解&#xff0c;详情查看&#xff1a;SPI基础知识实…...

MVC 文件夹结构详解

MVC 文件夹结构详解 MVC(Model-View-Controller)是一种广泛应用于软件开发中的设计模式,它通过将应用程序分为三个核心组件——模型(Model)、视图(View)和控制器(Controller)——来组织代码,提高代码的可维护性和可扩展性。在MVC模式中,每个组件都有其特定的职责,…...

远程操作Linux服务器 _Xshell、Xftp以及Linux常见操作命令

工具推荐 Xshell和Xftp是两款由NetSarang公司开发的、广受欢迎的软件工具&#xff0c;它们分别专注于终端模拟和文件传输&#xff0c;为用户提供了便捷的操作和强大的功能。以下是对这两款软件的详细解析&#xff1a; 一、Xshell 定义与功能 Xshell是一个强大的安全终端模拟软…...

单链表的实现(数据结构)

一. 单链表的实现 我们在上一篇中简单的认识了链表的组成和结构&#xff0c;并打印出链表&#xff0c;那么今天就来具体实现一下单链表对于数据增加、删减、插入等。 接下来就是我们在链表中对于数据的增、删、插的实现&#xff0c;对于我们的链表来说在任何地方增加数据都需…...

印刷质量检测笔记

一、印刷质量检测的背景与挑战 印刷品的质量检测&#xff0c;特别是针对高精度要求的印刷产品&#xff0c;如包装材料、标签、书籍封面等&#xff0c;一直是制造业中的一个关键环节。印刷品可能存在的质量问题多种多样&#xff0c;包括但不限于颜色偏差、文字模糊、漏印、多印…...

16、论文阅读:Mamba YOLO:用于目标检测的基于 SSM 的 YOLO

Mamba YOLO: SSMs-Based YOLO For Object Detection 总结前言感受野为什么Transformer 的结构被引入&#xff0c;显著扩展了模型的感受野&#xff1f;状态空间模型SSM 介绍相关工作实时目标检测端到端目标检测器视觉状态空间模型 方法预处理整体架构ODSS BlockLocalSpatial Blo…...

python项目实战---使用图形化界面下载音乐

音乐下载 设计思路&#xff1a; 设计界面编写爬虫代码绑定爬虫打包exe文件 这个是最终的设计成果&#xff0c;所有的下载歌曲都在“下载mp3”文件夹里面 完整代码 逻辑代码 import os.path import reimport requests from PyQt5.QtWidgets import QApplication,QWidget,QM…...

无人机干扰与抗干扰,无人机与反制设备的矛与盾

无人机干扰与抗干扰&#xff0c;以及无人机与反制设备之间的关系&#xff0c;可以形象地比喻为矛与盾的较量。以下是对这两方面的详细探讨&#xff1a; 一、无人机干扰与抗干扰 1. 无人机干扰技术 无人机干扰技术是指通过各种手段对无人机系统进行干扰&#xff0c;使其失去正…...

JAVA基础:单元测试;注解;枚举;网络编程 (学习笔记)

单元测试 操作步骤&#xff1a; a.导包import org.junit; b.三个注解 Test Before After c.点击Test 运行就可以了 用在不需要控制台输入的情境下&#xff1a;javaweb&#xff0c;框架项目&#xff0c;微服务项目 供开发人员自己做测试。 package com.page…...

Meta 上周宣布正式开源小型语言模型 MobileLLM 系列

在 7 月发布之后&#xff0c;Meta 上周宣布正式开源能够在智能手机上运行的小型语言模型 MobileLLM 系列。 Meta 在四个月前发布了这两个参数量小于 10 亿的语言模型 MobileLLM 125M 及 MobileLLM 350M。如今&#xff0c;Meta 又开发出了更大参数量的模型版本&#xff0c;包括…...

安全篇(1)判断安全固件

判断安全固件的方法 一、通过串口开机打印 改方法适用Android与Tina 1.开机打印为SBOOT为安全 [289]HELLO! SBOOT is starting! 2.开机打印boot0为非安全 [88]BOOT0 commit : 1cbb5ea8b3 二、通过读数据 1.getprop | grep verifiedbootstate 这条命令的输出表示设备的…...

ArcGIS005:ArcMap常用操作101-150例动图演示

摘要&#xff1a;本文涵盖了GIS软件操作的多方面内容&#xff0c;包括地图文档的新建、打开、保存及版本兼容性处理&#xff1b;错误与警告的查阅及帮助文档的使用技巧&#xff1b;地图打印比例尺的调整与地图信息的完善&#xff1b;图层操作的撤销与恢复&#xff0c;界面元素的…...

如何用ChatGPT结合Python处理遥感数据

在科技飞速发展的时代&#xff0c;遥感数据的精准分析已经成为推动各行业智能决策的关键工具。从无人机监测农田到卫星数据支持气候研究&#xff0c;空天地遥感数据正以前所未有的方式为科研和商业带来深刻变革。然而&#xff0c;对于许多专业人士而言&#xff0c;如何高效地处…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...