腾讯混元宣布大语言模型和3D模型正式开源
腾讯混元大模型正在加快开源步伐。
11月5日,腾讯混元宣布最新的MoE模型“混元Large“以及混元3D生成大模型“ Hunyuan3D-1.0”正式开源,支持企业及开发者精调、部署等不同场景的使用需求,可在HuggingFace、Github等技术社区直接下载,免费可商用。
本次开源是腾讯混元继文生图模型后持续开放的一大举措。其中,腾讯混元Large是目前开源领域参数规模最大、效果最好的MoE模型,而腾讯混元3D生成大模型则是业界首个同时支持文字、图像生成3D的开源大模型。两个模型均属腾讯自研,在架构、算法、数据等方面有独特创新,填补了行业空白。目前,两个模型均已经在腾讯业务场景中落地应用,经过实践的检验,是面向实用场景的应用级大模型。
当天,腾讯云TI平台和高性能应用服务HAI也开放接入这两个模型,为模型的精调、API调用及私有化部署提供一站式服务。
坚持MoE架构,模型持续升级开放
腾讯混元Large模型总参数量 389B,激活参数量 52B ,上下文长度高达256K,公开测评结果显示,腾讯混元Large 在CMMLU、MMLU、CEval、MATH等多学科综合评测集以及中英文NLP任务、代码和数学等9大维度全面领先,超过Llama3.1、Mixtral等一流的开源大模型。

腾讯混元Large 在各类测试集上得分领先现有主流开源模型
MoE(Mixture of Experts),即混合专家模型,是目前国内外主流的大模型结构。2024年年初,腾讯混元就宣布在国内率先采用MoE架构模型,总体性能比上一代Dense模型提升50%。此后,腾讯混元推出基于 MoE 架构的多模态理解大模型以及基础模型"混元turbo",在性能、效果、速度等多个领域表现优越,第三方测评居国内大模型第一。
在模型结构和训练策略方面,腾讯混元Large全面探索了MoE ScalingLaw,进行了MoE共享专家路由、回收路由等策略上的创新,并引入了专家特化的学习率适配训练策略,有效提升不同专家利用率和稳定性,带来模型效果的提升。
腾讯混元Large在Post-Train方面做了大量创新优化。面对SFT通用领域繁多,数学、代码高质量指令数据获取困难,业界广泛采用的离线DPO,强化策略效果上限不高,泛化性弱等挑战,腾讯混元Large模型分门别类提升数学、逻辑推理、代码等能力,另外在一阶段离线DPO的基础上引入了二阶段在线强化策略。
数据方面,腾讯混元Large构建了覆盖数十个类目,高质量、高多样性、大量级的中英文合成数据,显著提升模型效果,其中数学和代码效果提升超过10%。 针对长文领域测评数据集缺乏,方法不够客观等问题,腾讯混元Large还基于公开数据,构建了一套完整覆盖长文阅读理解、多文档摘要总结、长文逻辑推理等领域任务的数据集企鹅卷轴(PenguinScrolls),并将对外开放,助力大模型长文方向的技术研究。
腾讯混元Large模型专项提升的长文能力已经应用到腾讯AI助手腾讯元宝上,最大支持256K上下文,相当于一本《三国演义》的长度,可以一次性处理上传最多10个文档,并能够一次性解析多个微信公众号链接、网址,让腾讯元宝具备独有的深度解析能力。
工程平台方面,腾讯混元Large模型由腾讯自研,其训练和推理均基于腾讯Angel机器学习平台。其中,针对 MoE 模型通信效率问题,Angel训练加速框架AngelPTM实现了多项技术优化,性能是主流开源框架DeepSpeed的2.6倍;针对模型推理加速,腾讯Angel机器学习平台和腾讯云智能联合研发 AngelHCF-vLLM框架,在最大限度保障精度的条件下,可节省50%以上显存,相比于业界主流的框架BF16吞吐提升1倍以上。
腾讯混元Large 模型已同步上架腾讯云 TI平台。TI 平台具备实战型大模型精调工具链,提供灵活的大模型训练数据标注能力和开源的数据构建Pipeline,内置 Angel训练和推理加速能力,支持一键启动混元Large精调,帮助用户训练出真正满足业务需求的专属大模型,提升研发效率。
同时,腾讯混元大模型 PaaS平台开放支持包含混元 Large 模型在内的十余种混元API 服务调用,可满足文生文、图生文、文生图等不同模态以及角色扮演、FunctionCall、代码等不同专项的模型需求。
业界首个同时支持文字、图像生成3D的开源大模型
腾讯混元3D生成大模型首批开源模型包含轻量版和标准版,轻量版仅需10s即可生成高质量3D资产,目前已在技术社区公开发布,包含模型权重、推理代码、模型算法等完整模型,可供开发者、研究者等各类用户免费使用。
腾讯混元Hunyuan3D-1.0 模型也已上架到腾讯云HAI,通过HAI上更高性价比的GPU算力、模型一键部署能力和可视化图形界面WebUI,有效降低模型开放和部署门槛。

此次腾讯混元开源的3D生成大模型 Hunyuan3D-1.0 ,解决了现有的3D生成模型在生成速度和泛化能力上存在不足的问题,可以帮助 3D 创作者和艺术家自动化生产 3D 资产。该模型具有强大泛化能力和可控性,可重建各类尺度物体,大到建筑,小到工具花草。经过定性、定量多个维度的评估,腾讯混元3D生成大模型的生成质量已达到开源模型的先进水平。
在两个公开的3D数据集 GSO 与 OmniObject3D 上,腾讯混元Hunyuan3D-1.0 效果优于主流开源模型,整体能力属于国际领先水平。从定性角度评估,Hunyuan3D-1.0 与行业领先的开源模型的 3D 生成效果表现对比也显示出较高水平,包括几何细节、纹理细节、纹理-几何一致性、3D合理性、指令遵循等评价维度。
应用上,3D生成相关技术已经开始应用于UGC 3D创作、商品素材合成、游戏3D资产生成等腾讯业务中。其中,腾讯地图基于腾讯混元3D大模型,发布了自定义3D导航车标功能,支持用户创作个性化的 3D 导航车标,相比传统的3D车标重建方案,速度提升了91%。此前,腾讯元宝 APP 也上线了”3D 角色梦工厂“玩法,支持个性化的 UGC 3D 人物生成。
随着自研大模型技术强大的和应用实践经验的丰富,开源已经成为腾讯混元大模型的一个战略选择,未来,腾讯混元也将继续带来更多模态、更多尺寸的开源模型,将更多经过腾讯业务场景打磨和检验的模型开源,促进大模型技术进步和行业生态繁荣。
附:腾讯混元Large访问地址
官网地址:腾讯混元
Github地址:
https://github.com/Tencent/Tencent-Hunyuan-Large
Hugging Face 地址:
https://huggingface.co/tencent/Tencent-Hunyuan-Large
附:腾讯3D模型访问地址
官网地址:https://3d.hunyuan.tencent.com/
Github 地址:https://github.com/Tencent/Hunyuan3D-1
Hugging Face 模型地址:https://huggingface.co/tencent/Hunyuan3D-1
相关文章:
腾讯混元宣布大语言模型和3D模型正式开源
腾讯混元大模型正在加快开源步伐。 11月5日,腾讯混元宣布最新的MoE模型“混元Large“以及混元3D生成大模型“ Hunyuan3D-1.0”正式开源,支持企业及开发者精调、部署等不同场景的使用需求,可在HuggingFace、Github等技术社区直接下载ÿ…...
提示工程指南 笔记
诸神缄默不语-个人CSDN博文目录 课程网站:提示工程指南 | Prompt Engineering Guide 原版是英文:https://www.promptingguide.ai/ 特别基础的内容我就不写了,只写一些值得记录的内容。 文章目录 1. 常用术语(LLM特供版ÿ…...
WordPress站点网站名称、logo设置
WordPress网站名称设置 后台打开查看站点自定义设置 点击网站名称修改 上传logo和站点图标...
本地缓存与 Redis:为什么我们仍然需要本地缓存?
文章目录 本地缓存与 Redis:为何仍需本地缓存?为什么需要本地缓存?多级缓存架构多级缓存的实现 本地缓存的实现方式使用 cachetools 实现 LRUCache使用 diskcache 实现持久化缓存 缓存装饰器实现进一步优化:缓存失效与更新 小结 好…...
要在微信小程序中让一个 `view` 元素内部的文字水平垂直居中,可以使用 Flexbox 布局
文章目录 主要特点:基本用法:常用属性: 要在微信小程序中让一个 view 元素内部的文字水平垂直居中,可以使用 Flexbox 布局。以下是如何设置样式的示例: .scan-button {display: flex; /* 启用 Flexbox 布局 */justify…...
图像超分辨率、DPSRGAN
图像超分辨率(Image Super-Resolution, ISR)是一种通过增加图像的分辨率来提高其细节和清晰度的技术。这项技术在多个领域都有广泛的应用,比如视频监控、医学诊断、遥感应用等。根据搜索结果,图像超分辨率算法主要可以分为以下几类…...
124.WEB渗透测试-信息收集-ARL(15)
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:123.WEB渗透测试-信息收集-ARL(14) 点击fofa任务下发(…...
@Async注解提升Spring Boot项目中API接口并发能力
文章目录 同步调用异步调用1: 启用异步支持2: 修改 Task 类异步回调基本概念使用 Future<String>使用 CompletableFuture<String>Future<String> 和 CompletableFuture<String>区别1. 基本概念2. 主要区别同步调用 同步调用是最直接的调用方式,调用方…...
SpringBoot集成Flink-CDC
Flink CDC CDC相关介绍 CDC是什么? CDC是Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到MQ以…...
SQL报错注入检测方法与攻击方法
报错注入 即是注入检测方法,又是注入读取数据的方法 攻击者在判断一个参数是否存在SQL注入漏洞时,会拼接单引号,反斜杠字符,如果显示语法报错,证明这个位置具有SQL注入漏洞,也可以通过整数溢出来判断&…...
Linux内核编程(十九)SPI子系统的应用与驱动编写
本文目录 一、 SPI驱动框架图二、编写SPI驱动device框架三、编写SPI驱动driver框架四、实验一编写mcp2515驱动1. 注册字符设备或杂项设备框架2. SPI写数据3. SPI读寄存器数据 4. MCP2515相关配置 对于SPI基础知识这里不做过多讲解,详情查看:SPI基础知识实…...
MVC 文件夹结构详解
MVC 文件夹结构详解 MVC(Model-View-Controller)是一种广泛应用于软件开发中的设计模式,它通过将应用程序分为三个核心组件——模型(Model)、视图(View)和控制器(Controller)——来组织代码,提高代码的可维护性和可扩展性。在MVC模式中,每个组件都有其特定的职责,…...
远程操作Linux服务器 _Xshell、Xftp以及Linux常见操作命令
工具推荐 Xshell和Xftp是两款由NetSarang公司开发的、广受欢迎的软件工具,它们分别专注于终端模拟和文件传输,为用户提供了便捷的操作和强大的功能。以下是对这两款软件的详细解析: 一、Xshell 定义与功能 Xshell是一个强大的安全终端模拟软…...
单链表的实现(数据结构)
一. 单链表的实现 我们在上一篇中简单的认识了链表的组成和结构,并打印出链表,那么今天就来具体实现一下单链表对于数据增加、删减、插入等。 接下来就是我们在链表中对于数据的增、删、插的实现,对于我们的链表来说在任何地方增加数据都需…...
印刷质量检测笔记
一、印刷质量检测的背景与挑战 印刷品的质量检测,特别是针对高精度要求的印刷产品,如包装材料、标签、书籍封面等,一直是制造业中的一个关键环节。印刷品可能存在的质量问题多种多样,包括但不限于颜色偏差、文字模糊、漏印、多印…...
16、论文阅读:Mamba YOLO:用于目标检测的基于 SSM 的 YOLO
Mamba YOLO: SSMs-Based YOLO For Object Detection 总结前言感受野为什么Transformer 的结构被引入,显著扩展了模型的感受野?状态空间模型SSM 介绍相关工作实时目标检测端到端目标检测器视觉状态空间模型 方法预处理整体架构ODSS BlockLocalSpatial Blo…...
python项目实战---使用图形化界面下载音乐
音乐下载 设计思路: 设计界面编写爬虫代码绑定爬虫打包exe文件 这个是最终的设计成果,所有的下载歌曲都在“下载mp3”文件夹里面 完整代码 逻辑代码 import os.path import reimport requests from PyQt5.QtWidgets import QApplication,QWidget,QM…...
无人机干扰与抗干扰,无人机与反制设备的矛与盾
无人机干扰与抗干扰,以及无人机与反制设备之间的关系,可以形象地比喻为矛与盾的较量。以下是对这两方面的详细探讨: 一、无人机干扰与抗干扰 1. 无人机干扰技术 无人机干扰技术是指通过各种手段对无人机系统进行干扰,使其失去正…...
JAVA基础:单元测试;注解;枚举;网络编程 (学习笔记)
单元测试 操作步骤: a.导包import org.junit; b.三个注解 Test Before After c.点击Test 运行就可以了 用在不需要控制台输入的情境下:javaweb,框架项目,微服务项目 供开发人员自己做测试。 package com.page…...
Meta 上周宣布正式开源小型语言模型 MobileLLM 系列
在 7 月发布之后,Meta 上周宣布正式开源能够在智能手机上运行的小型语言模型 MobileLLM 系列。 Meta 在四个月前发布了这两个参数量小于 10 亿的语言模型 MobileLLM 125M 及 MobileLLM 350M。如今,Meta 又开发出了更大参数量的模型版本,包括…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...
