Pytorch学习--神经网络--优化器
一、头文件
torch.optim.Optimizer(params, defaults)
optim文档
for input, target in dataset:optimizer.zero_grad()output = model(input)loss = loss_fn(output, target)loss.backward()optimizer.step()
二、代码
不带优化器的代码框架
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d, Conv2d, Flatten, Linear
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10("datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)class Mary(nn.Module):def __init__(self):super(Mary,self).__init__()self.model1 = nn.Sequential(Conv2d(3, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 64, 5, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self,x):x = self.model1(x)return xYorelee = Mary()
loss = nn.CrossEntropyLoss()
optim = torch.optim.SGD(Yorelee.parameters(),lr=0.01)for epoch in range(20):total_loss = 0for data in dataloader:img,target = dataoutput = Yorelee(img)# print(output)# print(target)result_loss = loss(output,target)# print(result_loss)# print("***********************")optim.zero_grad()result_loss.backward()optim.step()total_loss += result_lossprint(total_loss)
输出:
tensor(18861.5215, grad_fn=<AddBackward0>)
tensor(16226.8633, grad_fn=<AddBackward0>)
tensor(15367.2148, grad_fn=<AddBackward0>)
相关文章:
Pytorch学习--神经网络--优化器
一、头文件 torch.optim.Optimizer(params, defaults) optim文档 for input, target in dataset:optimizer.zero_grad()output model(input)loss loss_fn(output, target)loss.backward()optimizer.step()二、代码 不带优化器的代码框架 import torch import torchvision…...
w~自动驾驶合集11
我自己的原文哦~ https://blog.51cto.com/whaosoft/12329152 #特斯拉的“纯视觉”路线 , 也许不是最好的 BEVTransformer占用网络技术路线的大热,再次将激光雷达推向风口浪尖。 激光雷达该不该被抛弃? 对车企来说,这是一个艰难的抉择&am…...
大数据新视界 -- 大数据大厂之 Impala 性能优化:解锁大数据分析的速度密码(上)(1/30)
💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...
GESP4级考试语法知识(算法概论(三))
爱因斯坦的阶梯代码: //算法1-12 #include<iostream> using namespace std; int main() {int n1; //n为所设的阶梯数while(!((n%21)&&(n%32)&&(n%54)&&(n%65)&&(n%70)))n; //判别是否满足一组同余式cout<<n<…...
x-cmd pkg | gum - 轻松构建美观实用的终端界面,解锁命令行新玩法
目录 简介快速上手安装使用 功能特点竞品和相关作品进一步探索 简介 gum 是由 Charm 团队于 2022 年使用 Go 开发的终端 UI 组件工具箱,能帮用户在终端中快速构建交互式 TUI 界面(如表单、菜单、提示框等),简化命令行应用程序的开…...
WMS系统打通仓储全链条数据势在必行,该如何做呢
一、引言 在当今竞争激烈的商业环境中,高效的仓储管理对于企业的生存和发展至关重要。仓储管理系统(WMS)作为现代仓储管理的核心工具,其作用不仅仅是简单地记录库存数量和位置,更在于打通仓储全链条数据,实…...
基于Python的校园爱心帮扶管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…...
如何基于pdf2image实现pdf批量转换为图片
最近为了将pdf报告解析成为文本和图片,需要将大量多页的pdf文件拆分下单独的一页一页的图像,以便后续进行OCR和图像处理,因此就需要实现将pdf2image,本文主要结合开源的pdf2image和poppler,实现了pdf转换为png格式图片…...
Tomcat(1) 什么是Tomcat?
Tomcat是一个开源的Web服务器和Servlet容器,它实现了Java Servlet、JavaServer Pages (JSP)、WebSocket和Java EL等Java EE规范。Tomcat由Apache软件基金会维护,是Java应用程序的常用部署平台。 深入理解Tomcat 1. 架构 Tomcat的核心组件包括…...
商务礼仪与职场沟通
知人者智,自知者明。胜人者有力,自胜者强。知足者富,强行者有志,不失其所者久,死而不亡者寿。 ——《道德经(第三十三章)》 认知先行——意识塑造 职业化——标准化,规范化&#…...
C语言必做30道练习题
C语言练习30题(分支循环,数组,函数,递归,操作符) 目录 分支循环1.闰年的判断2.阅读代码,计算代码输出的结果3.输入一个1~7的数字,打印对应的星期几4.输入任意一个整数值,…...
Linux信号_信号的产生
信号概念 信号是进程之间事件异步通知的一种方式,属于软中断。 异步:在异步操作中,任务可以独立执行。一个任务的开始或完成不依赖于其他任务的状态。 同步:在同步操作中,任务之间的执行是相互依赖的。一个任务必须等待…...
数据库基础(7) . DML-基本操作
3.3.DML DML 是 “Data Manipulation Language”(数据操作语言)的缩写,在数据库管理系统(DBMS)中用来处理已存在的数据库中的数据。 它主要包含用于插入(INSERT)、更新(UPDATE&…...
windows运行ffmpeg的脚本报错:av_ts2str、av_ts2timestr、av_err2str => E0029 C4576
问题描述 我目前的环境是: 编辑器: Microsoft Visual Studio Community 2022 (64 位) 运行的脚本是ffmpeg自带的remux样例,只不过我想用c语言执行这个样例。在执行的过程中报错如下图: C4576 后跟初始值设定项列表的带圆括…...
[mysql]mysql的DML数据操作语言增删改,以及新特性计算列,阿里巴巴开发手册mysql相关
1DML数据操作语言,增加删除改数据 插入数据INSERT 插入添加数据,两种方法 方式1:VALUES添加数据 #准备工作 USE atguigudb; CREATE TABLE IF NOT EXISTS emp1( id INT, name VARCHAR(15), hire_data DATE, salary DOUBLE(10,2)); SELECT * FROM emp1 INSERT INTO em…...
Github 2024-11-07 Go开源项目日报 Top10
根据Github Trendings的统计,今日(2024-11-07统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Go项目10HTML项目1Kubernetes: 容器化应用程序管理系统 创建周期:3618 天开发语言:Go协议类型:Apache License 2.0Star数量:106913 个Fork数…...
【黑盒测试】等价类划分法及实例
本文主要介绍黑盒测试之等价类划分法,如什么是等价类划分法,以及如何划分,设计等价类表。以及关于三角形案例的等价类划分法。 文章目录 一、什么是等价类划分法 二、划分等价类和列出等价类表 三、确定等价类的原则 四、建立等价类表 …...
LeetCode17. 电话号码的字母组合(2024秋季每日一题 59)
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。 示例 1: 输入:digits “23” 输出:[“…...
SQLite数据库是什么?DB Browser for SQLite是什么?
SQLite是一个轻量级的嵌入式数据库,它是一个遵守ACID原则的关系型数据库管理系统。SQLite的主要特点是占用资源少、无需配置、支持多种操作系统和编程语言,并且具有高性能和跨平台特性。 SQLite的基本概念和特性 轻量级:SQLite的数据…...
核心概念解析Caffeine 缓存模型与策略
1. 简介 什么是 Caffeine Caffeine 是一个高性能的 Java 缓存库,专为提高内存缓存的效率和灵活性而设计。它由 Google 的 Guava Cache 项目启发,并提供了更高的性能和更丰富的功能集。Caffeine 以其卓越的缓存命中率和内存管理能力而广受欢迎ÿ…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
