计算机毕业设计Python+大模型神经网络电影推荐 知识图谱图神经网络电影推荐可视化系统 注意力机制 秒杀同类电影推荐项目 GNN GAT
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作
主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等
业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。
收藏点赞不迷路 关注作者有好处
文末获取源码
知识图谱图神经网络电影推荐可视化系统:深度学习、注意力机制、GNN+GAT+Vue+Django+Neo4j架构秒杀同类电影推荐项目
摘要
随着大数据和人工智能技术的快速发展,电影推荐系统已成为提升用户体验的重要手段。本文提出了一种基于知识图谱和图神经网络(GNN)的电影推荐系统,结合深度学习、注意力机制以及GNN和GAT(图注意力网络)模型,通过Vue前端框架和Django后端框架,以及Neo4j图数据库,实现了电影推荐的可视化。该系统不仅提升了推荐的准确性,还通过直观的可视化界面增强了用户体验。实验结果表明,该系统在推荐效果和用户满意度上均优于同类电影推荐项目。
引言
电影推荐系统通过分析用户行为和电影内容,为用户提供个性化的电影推荐。传统的推荐系统主要基于协同过滤和基于内容的推荐方法,但这些方法在处理复杂关系和稀疏数据时存在局限性。近年来,知识图谱和图神经网络(GNN)的兴起为电影推荐提供了新的思路。知识图谱能够表示实体和关系,而GNN则能够高效地处理图结构数据,结合深度学习和注意力机制,可以进一步提升推荐的准确性。
系统架构
1. 后端架构
本系统后端采用Django框架,Django是一个用Python编写的高级Web框架,它允许快速开发安全和维护性高的网站。Django负责处理用户请求、数据管理和业务逻辑。
2. 数据库架构
系统使用Neo4j作为图数据库,Neo4j是一个高性能的、基于Java的图数据库,能够高效地存储和查询图结构数据。电影、用户及其关系数据存储在Neo4j中,便于GNN模型进行图卷积操作。
3. 前端架构
前端采用Vue框架,Vue是一个用于构建用户界面的渐进式JavaScript框架。Vue通过数据绑定和组件化开发,实现了界面与数据的动态交互,提升了用户体验。
4. 模型架构
GNN模型
图神经网络(GNN)能够处理图结构数据,通过节点之间的信息传递和聚合,学习节点的表示。本系统采用GNN模型对电影和用户进行表示学习,捕捉用户和电影之间的复杂关系。
GAT模型
图注意力网络(GAT)是GNN的一种变体,通过引入注意力机制,GAT能够动态地调整节点之间的权重,从而更准确地捕捉节点之间的关系。本系统结合GAT模型,进一步提升推荐的准确性。
5. 深度学习与注意力机制
深度学习通过多层神经网络进行特征提取和表示学习,能够自动学习数据的复杂特征。注意力机制则允许模型根据输入的重要性分配注意力,提高模型的性能。本系统结合深度学习和注意力机制,优化GNN和GAT模型的训练过程。
系统实现
1. 数据预处理
系统首先通过爬虫技术从豆瓣等网站爬取电影数据,包括电影名称、导演、演员、评分等信息。然后,将电影数据导入Neo4j图数据库,构建电影知识图谱。
2. 模型训练
使用GNN和GAT模型对电影知识图谱进行表示学习,学习电影和用户的表示向量。通过深度学习和注意力机制优化模型的训练过程,提高模型的推荐准确性。
3. 推荐算法
结合协同过滤和基于内容的推荐方法,根据用户的历史行为和电影内容,为用户推荐个性化的电影。同时,通过可视化界面展示推荐结果和推荐理由,增强用户体验。
4. 可视化界面
使用Vue框架开发前端可视化界面,通过echarts等图表库展示电影知识图谱和推荐结果。用户可以在界面上直观地查看推荐的电影和推荐理由,提高推荐的透明度和可信度。
实验结果与分析
1. 推荐准确性
通过对比实验,本系统在推荐准确性上优于传统的协同过滤和基于内容的推荐方法。特别是在处理复杂关系和稀疏数据时,GNN和GAT模型的优势更加明显。
2. 用户满意度
通过用户调查,本系统获得了较高的用户满意度。用户认为系统推荐的电影符合他们的兴趣和需求,可视化界面也提升了他们的使用体验。
结论
本文提出了一种基于知识图谱和图神经网络(GNN)的电影推荐系统,结合深度学习、注意力机制以及GNN和GAT模型,通过Vue前端框架和Django后端框架,以及Neo4j图数据库,实现了电影推荐的可视化。实验结果表明,该系统在推荐效果和用户满意度上均优于同类电影推荐项目。未来,我们将继续优化模型算法和可视化界面,提升系统的性能和用户体验。
参考文献
- Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, et al. Modeling Relational Data with Graph Convolutional Networks. ESWC 2018.
- Zhichun Wang, Qingsong Lv, Xiaohan Lan, et al. Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks. EMNLP 2018.
- Wenhan Xiong, Mo Yu, Shiyu Chang, et al. One-Shot Relational Learning for Knowledge Graphs. EMNLP 2018.
- Namyong Park, Andrey Kan, Xin Luna Dong, et al. Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks. KDD 2019.
- 图神经网络: 基础、前沿与应用.
下面是一段简化版的图神经网络(Graph Neural Network, GNN)实现的电影推荐算法代码示例。由于完整的实现会涉及大量细节(如数据预处理、模型训练、超参数调整等),以下代码仅展示了一个基本的GNN模型架构和电影推荐的基本流程。为了简化,这里假设已经有一个处理好的图数据结构,其中节点代表电影和用户,边代表用户对电影的评分或观看记录。
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.data import Data
from torch_geometric.nn import GCNConv# 假设已经有处理好的图数据
# 这里以字典形式简化表示,实际中应使用torch_geometric的Data对象
graph_data = {'x': torch.tensor([[...], [...], ...], dtype=torch.float), # 节点特征矩阵'edge_index': torch.tensor([[0, 1, 1, 2, ...], [1, 0, 2, 1, ...]], dtype=torch.long), # 边索引矩阵'movie_idx': torch.tensor([0, 1, 2, ...], dtype=torch.long), # 电影节点索引'user_idx': torch.tensor([100, 101, 102, ...], dtype=torch.long) # 用户节点索引
}# 将数据转换为torch_geometric的Data对象
data = Data(x=graph_data['x'], edge_index=graph_data['edge_index'])# 定义GNN模型
class GNNMovieRecommender(nn.Module):def __init__(self, in_channels, hidden_channels, out_channels):super(GNNMovieRecommender, self).__init__()self.conv1 = GCNConv(in_channels, hidden_channels)self.conv2 = GCNConv(hidden_channels, out_channels)def forward(self, x, edge_index):x = self.conv1(x, edge_index)x = F.relu(x)x = self.conv2(x, edge_index)return x# 模型参数
in_channels = graph_data['x'].size(1) # 节点特征维度
hidden_channels = 32 # 隐藏层维度
out_channels = 16 # 输出层维度(可以是电影类型数量或其他嵌入维度)# 初始化模型
model = GNNMovieRecommender(in_channels, hidden_channels, out_channels)# 定义损失函数和优化器
criterion = nn.MSELoss() # 均方误差损失,这里仅为示例,实际中可能使用其他损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)# 训练模型(简化版,仅示意)
def train():model.train()optimizer.zero_grad()out = model(data.x, data.edge_index)# 假设有一个目标值target,这里需要根据具体任务定义# target = ...loss = criterion(out[graph_data['movie_idx']], target) # 仅对电影节点计算损失loss.backward()optimizer.step()return loss.item()# 假设训练循环
for epoch in range(100): # 训练100个epochloss = train()print(f'Epoch {epoch+1}, Loss: {loss:.4f}')# 推理(为用户推荐电影)
def recommend_movies(user_idx, top_k=5):model.eval()with torch.no_grad():out = model(data.x, data.edge_index)user_embedding = out[graph_data['user_idx'] == user_idx].squeeze() # 获取用户嵌入movie_embeddings = out[graph_data['movie_idx']] # 获取电影嵌入scores = torch.mm(movie_embeddings, user_embedding.t()) # 计算用户与所有电影的相似度_, top_indices = scores.topk(top_k, largest=True) # 获取相似度最高的top_k个电影索引return top_indices.tolist()# 为用户ID为100的用户推荐电影
recommended_movies = recommend_movies(100)
print(f'Recommended movies for user 100: {recommended_movies}')
注意:
- 代码中的
graph_data
字典是一个简化的表示,实际中应使用torch_geometric.data.Data
对象来存储图数据。 - 损失函数
criterion
和目标值target
需要根据具体任务定义。在这个例子中,我们假设有一个目标值target
,但在实际应用中,这可能需要基于用户的交互历史或其他信息来定义。 - 训练循环中的
train
函数是简化版,仅用于示意。在实际应用中,你可能需要添加更多的代码来处理数据加载、模型验证和保存等。 - 推理函数
recommend_movies
计算了用户与所有电影的相似度,并返回了相似度最高的几个电影的索引。在实际应用中,你可能需要根据具体的推荐策略来调整这个函数。
相关文章:

计算机毕业设计Python+大模型神经网络电影推荐 知识图谱图神经网络电影推荐可视化系统 注意力机制 秒杀同类电影推荐项目 GNN GAT
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

Python | Leetcode Python题解之第543题二叉树的直径
题目: 题解: class Solution:def diameterOfBinaryTree(self, root: TreeNode) -> int:self.ans 1def depth(node):# 访问到空节点了,返回0if not node:return 0# 左儿子为根的子树的深度L depth(node.left)# 右儿子为根的子树的深度R …...

【浪潮商城-注册安全分析报告-无验证方式导致安全隐患】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 1. 暴力破解密码,造成用户信息泄露 2. 短信盗刷的安全问题,影响业务及导致用户投诉 3. 带来经济损失,尤其是后付费客户,风险巨大,造…...

如何设置VSCODE快捷键光标移到行首和行尾
{ "key": "cmdhome", "command": "cursorTop", },{ "key": "cmdend", "command": "cursorBottom", }...

Android——多线程、线程通信、handler机制
Android——多线程、线程通信、handler机制 模拟网络请求,会阻塞主线程 private String getStringForNet() {StringBuilder stringBuilder new StringBuilder();for (int i 0; i < 100; i) {stringBuilder.append("字符串" i);}try {Thread.sleep(…...

Java | Leetcode Java题解之第542题01矩阵
题目: 题解: class Solution {static int[][] dirs {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};public int[][] updateMatrix(int[][] matrix) {int m matrix.length, n matrix[0].length;// 初始化动态规划的数组,所有的距离值都设置为一个很大…...

docker安装低版本的jenkins-2.346.3,在线安装对应版本插件失败的解决方法
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、网上最多的默认解决方法1、jenkins界面配置清华源2、替换default.json文件 二、解决低版本Jenkins在线安装插件问题1.手动下载插件并导入2.低版本jenkins在…...

CSS3新增渐变(线性渐变、径向渐变、重复渐变)
1.线性渐变 代码: 效果图: 使文字填充背景颜色: 效果图: 2.径向渐变 代码: 效果图: 代码图: 效果图: 3.重复渐变 代码: 效果图:...

汽车免拆诊断案例 | 2017款凯迪拉克XT5车组合仪表上的指针均失灵
故障现象 一辆2017款凯迪拉克XT5车,搭载LTG 发动机,累计行驶里程约为17.2万km。车主反映,组合仪表上的发动机转速表、车速表、燃油表及发动机冷却液温度表的指针均不指示,但发动机起动及运转正常,且车辆行驶正常。 故…...

Cloudera Hue深度解析:安装、配置到高级用法
Hue的介绍 HUE 是一个开源的 Apache Hadoop UI 系统,早期由 Cloudera 开发,它是基于 Python Web 框架 Django 实现,后来贡献给开源社区。它包括 3 个部分 hue ui,hue server, hue db。通过使用 Hue 我们可以通过浏览…...

17、论文阅读:VMamba:视觉状态空间模型
前言 设计计算效率高的网络架构在计算机视觉领域仍然是一个持续的需求。在本文中,我们将一种状态空间语言模型 Mamba 移植到 VMamba 中,构建出一个具有线性时间复杂度的视觉主干网络。VMamba 的核心是一组视觉状态空间 (VSS) 块,搭配 2D 选择…...

GPT-5 一年后发布?对此你有何期待?
GPT-5 一年后发布?对此你有何期待? 在最新技术的洪流中,GPT-5即将登场。你是否在思考,它将为我们的生活和工作带来哪些变革?接下来的探索,或许可以启发你对未来的想象。让我们一起深入这场关于未来AI语言模…...

2024中国国际数字经济博览会:图为科技携明星产品引领数智化潮流
10月24日,全球数智化领域的目光齐聚于中国石家庄正定,一场关于数字经济未来的盛会—2024中国国际数字经济博览会在此拉开帷幕。 云边端算力底座的领航者,图为科技携其明星产品惊艳亮相,期待与您共赴一场数智化的非凡之旅ÿ…...

大模型面试题:常见的微调方法有哪些说下原理并对比
更多实时面试题总结请关注我的公众号"算法狗" 或移步至 https://pica.zhimg.com/80/v2-7fd6e77f69aa02c34ca8c334870b3bcd_720w.webp?sourced16d100b 这里说的微调主要是指参数微调,参数微调的方法主要有以下几种: Adapter 在预训练模型每一层…...
CentOS 9 Stream 上安装 PostgreSQL 16
CentOS 9 Stream 上安装 PostgreSQL 16 CentOS 9 Stream 上安装 PostgreSQL 16设置密码并且远程连接 CentOS 9 Stream 上安装 PostgreSQL 16 在 CentOS 9 Stream 上安装 PostgreSQL 16 可以通过以下步骤完成: 添加 PostgreSQL 官方仓库: PostgreSQL 提…...

【数据分享】1901-2023年我国省市县镇四级的逐年最高气温数据(免费获取/Shp/Excel格式)
之前我们分享过1901-2023年1km分辨率逐月最高气温栅格数据和Excel和Shp格式的省市县镇四级逐月最高气温数据,原始的逐月最高气温栅格数据来源于彭守璋学者在国家青藏高原科学数据中心平台上分享的数据!基于逐月数据我们采用求年平均值的方法得到逐年最高…...

使用C++和QT开发应用程序入门以及开发实例分享
目录 1、搭建开发环境(VS2010和QT4.8.2) 2、创建一个QT窗口 3、在QT窗口中添加子窗口 4、QT界面布局 5、QT信号(SIGNAL)和槽(SLOT) 6、最后 C软件异常排查从入门到精通系列教程(专栏文章列…...

Openlayers高级交互(20/20):超级数据聚合,页面不再混乱
本示例在vue+openlayers中使用cluster生成聚合数据的效果。在OpenLayers中实现点聚合(clustering)是一个常见的需求,特别是在处理大量地理数据点时。聚合可以提高地图的性能并减少视觉上的混乱。 一、示例效果图 专栏名称内容介绍Openlayers基础实战 (72篇)专栏提供73篇文…...

qt QStandardItemModel详解
1、概述 QStandardItemModel是Qt框架中提供的一个基于项的模型类,用于存储和管理数据,这些数据可以以表格的形式展示在视图控件(如QTableView、QTreeView等)中。QStandardItemModel支持丰富的数据操作,包括添加、删除…...

光伏设计软件如何快速上手?
光伏设计软件是现代光伏系统设计不可或缺的工具,它们大大简化了设计流程,提高了设计效率。对于新手来说,快速上手一款光伏设计软件可能会显得有些困难,但只要掌握了一些基础操作,就能迅速提升设计技能。 1、导入CAD图片…...

css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...