当前位置: 首页 > news >正文

大模型面试题:常见的微调方法有哪些说下原理并对比

更多实时面试题总结请关注我的公众号"算法狗" 或移步至 https://pica.zhimg.com/80/v2-7fd6e77f69aa02c34ca8c334870b3bcd_720w.webp?source=d16d100b

这里说的微调主要是指参数微调,参数微调的方法主要有以下几种:

  • Adapter
    在预训练模型每一层(或某些层)中添加Adapter模块(如上图左侧结构所示),微调时冻结预训练模型主体,由Adapter模块学习特定下游任务的知识。每个Adapter模块由两个前馈子层组成。具体使用了Adapter的模型结构如下所示:
    给每个任务定义了自己的Prompt,拼接到输入数据一起作为输入,同时freeze预训练模型进行训练
  • Prefix-tunning 前缀微调将一个连续的特定于任务的向量序列添加到输入,称之为前缀,如下图中的红色块所示。与提示(prompt)不同的是,前缀完全由自由参数组成,与真正的token不对应。相比于传统的微调,前缀微调只优化了前缀。因此,我们只需要存储一个大型Transformer和已知任务特定前缀的副本,对每个额外任务产生非常小的开销。
  • P-tuning/P-tuning V2
    P-tuning V1直接对embedding层进行优化存在两个挑战:embedding层已经经过预训练,如果直接对输入的prompt embedding进行随机初始化训练,容易陷入局部最优;没法捕捉到prompt embedding之间的相关性。
    P-Tuning V2是升级版本,主要解决P-Tuning V1在小参数量模型上表现差的问题。V2在每一层上都加了一个残差连接,每一层都加上prompts,使特征更充分。
    P-tuning模型加入embedding位置不固定,可以加在整个输入的前面或者后面,用法比较灵活,且其通过MLP+LSTM的方式对加入的embedding进行了学习,以提高收敛性。整体框架如下图所示: image
  • LORA
    采用低秩矩阵近似的思想,冻结一个预训练模型的矩阵参数,并选择用A和B矩阵来替代,在下游任务时只更新A和B。流程如下:

参考:
[1] https://zhuanlan.zhihu.com/p/636481171
[2] https://zhuanlan.zhihu.com/p/709376189

本文由 mdnice 多平台发布

相关文章:

大模型面试题:常见的微调方法有哪些说下原理并对比

更多实时面试题总结请关注我的公众号"算法狗" 或移步至 https://pica.zhimg.com/80/v2-7fd6e77f69aa02c34ca8c334870b3bcd_720w.webp?sourced16d100b 这里说的微调主要是指参数微调,参数微调的方法主要有以下几种: Adapter 在预训练模型每一层…...

CentOS 9 Stream 上安装 PostgreSQL 16

CentOS 9 Stream 上安装 PostgreSQL 16 CentOS 9 Stream 上安装 PostgreSQL 16设置密码并且远程连接 CentOS 9 Stream 上安装 PostgreSQL 16 在 CentOS 9 Stream 上安装 PostgreSQL 16 可以通过以下步骤完成: 添加 PostgreSQL 官方仓库: PostgreSQL 提…...

【数据分享】1901-2023年我国省市县镇四级的逐年最高气温数据(免费获取/Shp/Excel格式)

之前我们分享过1901-2023年1km分辨率逐月最高气温栅格数据和Excel和Shp格式的省市县镇四级逐月最高气温数据,原始的逐月最高气温栅格数据来源于彭守璋学者在国家青藏高原科学数据中心平台上分享的数据!基于逐月数据我们采用求年平均值的方法得到逐年最高…...

使用C++和QT开发应用程序入门以及开发实例分享

目录 1、搭建开发环境(VS2010和QT4.8.2) 2、创建一个QT窗口 3、在QT窗口中添加子窗口 4、QT界面布局 5、QT信号(SIGNAL)和槽(SLOT) 6、最后 C软件异常排查从入门到精通系列教程(专栏文章列…...

Openlayers高级交互(20/20):超级数据聚合,页面不再混乱

本示例在vue+openlayers中使用cluster生成聚合数据的效果。在OpenLayers中实现点聚合(clustering)是一个常见的需求,特别是在处理大量地理数据点时。聚合可以提高地图的性能并减少视觉上的混乱。 一、示例效果图 专栏名称内容介绍Openlayers基础实战 (72篇)专栏提供73篇文…...

qt QStandardItemModel详解

1、概述 QStandardItemModel是Qt框架中提供的一个基于项的模型类,用于存储和管理数据,这些数据可以以表格的形式展示在视图控件(如QTableView、QTreeView等)中。QStandardItemModel支持丰富的数据操作,包括添加、删除…...

光伏设计软件如何快速上手?

光伏设计软件是现代光伏系统设计不可或缺的工具,它们大大简化了设计流程,提高了设计效率。对于新手来说,快速上手一款光伏设计软件可能会显得有些困难,但只要掌握了一些基础操作,就能迅速提升设计技能。 1、导入CAD图片…...

Mac下安装Apache JMeter并启动

一、下载JMeter https://jmeter.apache.org/download_jmeter.cgi 下载好对应的压缩包,解压后即可,并将解压后的文件夹放至自己想要存放的位置。 二、启动JMeter 进入解压后的文件夹下的bin目录cd /usr/local/apache-jmeter-5.6.3/bin配置语言vim jmet…...

L6.【LeetCode笔记】合并两个有序链表

1.题目 https://leetcode.cn/problems/merge-two-sorted-lists/ 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4]示例 2&…...

讲解Golang选择语句

Golang选择语句 1. if 语句1.1 基本语法1.2 if-else 语句1.3 if-else if-else 语句1.4 简短声明和初始化1.5 多个条件的逻辑运算 2. switch 语句2.1 基本语法2.2 示例2.3 switch 语句与 if 的对比2.4 不指定表达式2.5 fallthrough 语句2.6 case 支持多个值 3. 总结 Go语言中的选…...

练习LabVIEW第四十一题

学习目标: 编写一个程序测试自己在程序前面板上输入一段文字“CSDN是一个优秀的网站”所用的时间。 开始编写: 前面板放置一个数值显示控件,程序框图添加顺序结构共三帧,第一帧放一个获取日期/时间(秒)函…...

应对AI与机器学习的安全与授权管理新挑战,CodeMeter不断创新引领保护方案

人工智能(AI)和机器学习(ML)技术正在快速发展,逐渐应用到全球各类主流系统、设备及关键应用场景中,尤其是在政府、商业和工业组织不断加深互联的情况下,AI和ML技术的影响日益广泛。虽然AI技术的…...

【2024最新版Kotlin教程】Kotlin第一行代码系列第五课-类继承,抽象类,接口

【2024最新版Kotlin教程】Kotlin第一行代码系列第五课-类继承,抽象类,接口 为什么要有继承呢,现实中也是有继承的,对吧,你继承你爸的遗产,比如你爸建好了一个房子,儿子继承爸,就得了…...

虚拟现实和增强现实技术,如何打造沉浸式体验?

内容概要 在这个科技飞速发展的时代,虚拟现实(VR)与增强现实(AR)技术的结合就像调皮的小精灵,一下子把我们的生活变得神奇又有趣。想象一下,你正在游戏中与精灵搏斗,突然间身边的客…...

ChatGPT任务设计和微调策略的优化

目录 ChatGPT任务设计和微调策略的优化 一、GPT-3的基础 二、任务设计和微调策略的优化 三、基于人类反馈的强化学习(RLHF) 举例 完全注意力机制的自回归解码器网络 一、定义与原理 二、举例说明 ChatGPT任务设计和微调策略的优化 ChatGPT确实是从GPT-3开始,通过任…...

通过 SSH 连接远程 Ubuntu 服务器

目录 安装 SSH 服务器允许 SSH 通过防火墙远程 SSH 连接(选)重启向日葵 安装 SSH 服务器 更新软件包列表 sudo apt update安装 OpenSSH 服务器 sudo apt install openssh-server检查 SSH 服务器状态 sudo systemctl status ssh如果 SSH 服务器正在运…...

Perl 环境安装

Perl 环境安装 Perl 是一种广泛使用的高级、通用、解释型、动态编程语言。它最初由 Larry Wall 在 1987 年设计,现在由 Perl 5 和 Perl 6 两个主要版本组成。Perl 适合于多种编程任务,包括系统管理、Web 开发、网络编程、游戏开发等。在开始使用 Perl 进行编程之前,您需要在…...

【NOIP提高组】引水入城

【NOIP提高组】引水入城 💐The Begin💐点点关注,收藏不迷路💐 在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠。该国的行政 区划十分特殊,刚好构成一个N行M列的矩形&#xff…...

openvino python推理demo

openvino python推理demo import openvino from openvino.runtime import Core import numpy as np import argparse import hashlib import os import ioclass OpenvinoInfer:def __init__(self,device_id0):self.device_iddevice_idself.ie Core()self.available_devices …...

JavaWeb项目-----博客系统

一.设计数据库 1.创建数据库 create database if not exists java108_blog_system character set utf8; drop table if exists user; drop table if exists blog;2.创建博客列表 create table blog(blogId int primary key auto_increment,title varchar(20),content varcha…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

Map相关知识

数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...