当前位置: 首页 > news >正文

openvino python推理demo

openvino python推理demo

import openvino
from openvino.runtime import Core
import numpy as np
import argparse
import hashlib
import os
import ioclass OpenvinoInfer:def __init__(self,device_id=0):self.device_id=device_idself.ie = Core()self.available_devices = []# 根据可用设备选择for name in self.ie.available_devices:if name.find("GPU")>=0:self.available_devices.append(name)print(self.available_devices)self.device_name=self.available_devices[self.device_id]print("Using device:",self.device_name)def build(self,onnx_path,onnx_data=None):  if onnx_data is None:with open(onnx_path, 'rb') as model:onnx_data=model.read()md5_hash = hashlib.md5(onnx_data).hexdigest()self.cache_path = f"{md5_hash}.engine"if not os.path.exists(self.cache_path):print("Building engine")model = self.ie.read_model(model=onnx_path)self.compiled_model = self.ie.compile_model(model=model, device_name=self.device_name)user_stream = io.BytesIO()self.compiled_model.export_model(user_stream)with open(self.cache_path, 'wb') as f:f.write(user_stream.getvalue())else:print("Load engine from cache")file = open(self.cache_path, 'br') user_stream = io.BytesIO(file.read())self.compiled_model = self.ie.import_model(model_stream=user_stream, device_name=self.device_name)dtype_map={openvino.Type.f32:np.float32,openvino.Type.i32:np.int32,openvino.Type.i64:np.int64}self.inputs=[]self.outputs=[]for input_layer in self.compiled_model.inputs:print(f"输入层名称:{input_layer.any_name}, 形状:{input_layer.shape} dtype:{input_layer.element_type}")self.inputs.append({"name": input_layer.any_name, "shape": input_layer.shape, "dtype": dtype_map[input_layer.element_type]})for output_layer in self.compiled_model.outputs:print(f"输入层名称:{output_layer.any_name}, 形状:{output_layer.shape} dtype:{output_layer.element_type}")self.outputs.append({"name": output_layer.any_name, "shape": output_layer.shape, "dtype": dtype_map[output_layer.element_type]})return Truedef inference(self,inputs):args=[]for idx,ipt in enumerate(inputs):args.append(ipt.reshape(self.inputs[idx]['shape']))result = self.compiled_model(args)output_data = []for item in self.outputs: output_data.append(result[item['name']])return output_dataif __name__ == '__main__':# 创建 ArgumentParser 对象parser = argparse.ArgumentParser(description='ai_model_trt_infer')parser.add_argument('--model', type=str, help='model')parser.add_argument('--input_paths', type=str, help='inputs')parser.add_argument('--input_dtypes', type=str, help='inputs')parser.add_argument('--output_paths', type=str, help='outputs')parser.add_argument('--output_dtypes', type=str, help='outputs')args = parser.parse_args()dtype_map={"int64":np.int64,"float32":np.float32,"float16":np.float16,"uint8":np.uint8}input_paths=args.input_paths.split(',')input_dtypes=args.input_dtypes.split(',')output_paths=args.output_paths.split(',')output_dtypes=args.output_dtypes.split(',')infer = OpenvinoInfer()infer.build(args.model)inputs=[]for idx,file_path in enumerate(input_paths):with open(file_path, 'rb') as f:input_data = np.frombuffer(f.read(), dtype=infer.inputs[idx]['dtype'])inputs.append(input_data)outputs_gt=[]outputs_pred=[]for idx,file_path in enumerate(output_paths):with open(file_path, 'rb') as f:output_data = np.frombuffer(f.read(), dtype=infer.outputs[idx]['dtype'])outputs_gt.append(output_data)        outputs_pred.append(np.empty(output_data.shape, dtype=output_data.dtype))outputs_pred=infer.inference(inputs)for idx,output_data in enumerate(outputs_pred):mse = np.mean((output_data.reshape(-1) - outputs_gt[idx].reshape(-1)) ** 2)print("均方误差 (MSE):", mse)

用法

python ai_model_openvino_infer.py \--model=resnet50.onnx \--input_paths=resnet50-input-input.bin \--output_paths=resnet50-output-output.bin \--input_dtypes="float32" \--output_dtypes="float32"python ai_model_openvino_infer.py \--model=yolov5m.onnx \--input_paths=yolov5m-images-input.bin \--output_paths=yolov5m-output0-output.bin \--input_dtypes="float32" \--output_dtypes="float32"    python ai_model_openvino_infer.py \--model=bert-base.onnx \--input_paths=bert-base-input_ids-input.bin,bert-base-attention_mask-input.bin,bert-base-token_type_ids-input.bin \--output_paths=bert-base-uncased-output.bin \--input_dtypes="int64,int64" \--output_dtypes="float32"

相关文章:

openvino python推理demo

openvino python推理demo import openvino from openvino.runtime import Core import numpy as np import argparse import hashlib import os import ioclass OpenvinoInfer:def __init__(self,device_id0):self.device_iddevice_idself.ie Core()self.available_devices …...

JavaWeb项目-----博客系统

一.设计数据库 1.创建数据库 create database if not exists java108_blog_system character set utf8; drop table if exists user; drop table if exists blog;2.创建博客列表 create table blog(blogId int primary key auto_increment,title varchar(20),content varcha…...

GY-56 (VL53L0X) 激光测距

文章目录 一、GY-56 简介二、引脚功能三、通信协议1.串口协议: 当 GY-56 PS 焊点开放时候使用(默认)(1)串口通信参数(默认波特率值 9600bps)(2)模块输出格式,每帧包含 8-13 个字节&a…...

当今陪玩系统小程序趋势,陪玩系统源码搭建后的适用于哪些平台

一、市场规模持续扩大 随着全球游戏市场的不断膨胀,游戏陪玩行业正逐渐从一个新兴领域成长为游戏产业链中不可或缺的一环。据《2024年1~6月中国游戏产业报告》显示,今年上半年,国内游戏市场实际销售收入达到1472.67亿元,同比增长…...

qt QListWidget详解

1、概述 QListWidget 是 Qt 框架中的一个类,它提供了一个基于模型的视图,用于显示项目的列表。QListWidget 继承自 QAbstractItemView 并为项目列表提供了一个直观的接口。与 QTreeView 和 QTableView 不同,QListWidget 是专门为单行或多行项…...

java ssm 校园快递物流平台 校园快递管理系统 物流管理 源码 jsp

一、项目简介 本项目是一套基于SSM的校园快递物流平台,主要针对计算机相关专业的和需要项目实战练习的Java学习者。 包含:项目源码、数据库脚本、软件工具等。 项目都经过严格调试,确保可以运行! 二、技术实现 ​后端技术&#x…...

西安电子科技大学考研网报审核通过了,然后呢?

报考西安电子科技大学的宝贝们,考研网上确认已经截止的同学们,不用担心! 最近,有很多同学问到一个问题:网上确认时看到有消息说禁止使用海马体照片,但我明明用了海马体的照片,审核却通过了&…...

pandas习题 051:将字符串数据读取到 DataFrame

编码题)有以下逗号隔开和空格隔开的字符串数据,如何将它读取为 DataFrame ? data = ‘’’ a,b,c 1,3,4 2,4,5 ‘’’ data2 = ‘’’ a b c 1 13 214 2 4 15 ‘’’ Python 代码如下:import pandas as pd import iodata = a,b,c 1,3,4 2,4,5 df = pd.read_csv(io.Stri…...

改进探路者算法复现

本文所涉及所有资源均在 传知代码平台 可获取。 目录 一、背景及意义介绍 (一)背景 ࿰...

PostgreSQL 学习笔记:PostgreSQL 主从复制

PostgreSQL 笔记:PostgreSQL 主从复制 博客地址:TMDOG 的博客 在现代应用程序中,数据库的高可用性和扩展性是至关重要的。PostgreSQL 提供了主从复制功能,可以在多个数据库实例之间复制数据,以实现冗余和负载均衡。本…...

【系统架构设计师(第2版)】十一、未来信息综合技术

未来信息综合技术是指近年来新技术发展而提出的一些新概念、新知识、新产品,主要包括信息物理系统(CPS)、人工智能(AI)、机器人、边缘计算、数字孪生、云计算和大数据等技术。这些技术涉及多学科、多领域,具…...

Pytorch学习--神经网络--优化器

一、头文件 torch.optim.Optimizer(params, defaults) optim文档 for input, target in dataset:optimizer.zero_grad()output model(input)loss loss_fn(output, target)loss.backward()optimizer.step()二、代码 不带优化器的代码框架 import torch import torchvision…...

w~自动驾驶合集11

我自己的原文哦~ https://blog.51cto.com/whaosoft/12329152 #特斯拉的“纯视觉”路线 , 也许不是最好的 BEVTransformer占用网络技术路线的大热,再次将激光雷达推向风口浪尖。 激光雷达该不该被抛弃? 对车企来说,这是一个艰难的抉择&am…...

大数据新视界 -- 大数据大厂之 Impala 性能优化:解锁大数据分析的速度密码(上)(1/30)

💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

GESP4级考试语法知识(算法概论(三))

爱因斯坦的阶梯代码&#xff1a; //算法1-12 #include<iostream> using namespace std; int main() {int n1; //n为所设的阶梯数while(!((n%21)&&(n%32)&&(n%54)&&(n%65)&&(n%70)))n; //判别是否满足一组同余式cout<<n<…...

x-cmd pkg | gum - 轻松构建美观实用的终端界面,解锁命令行新玩法

目录 简介快速上手安装使用 功能特点竞品和相关作品进一步探索 简介 gum 是由 Charm 团队于 2022 年使用 Go 开发的终端 UI 组件工具箱&#xff0c;能帮用户在终端中快速构建交互式 TUI 界面&#xff08;如表单、菜单、提示框等&#xff09;&#xff0c;简化命令行应用程序的开…...

WMS系统打通仓储全链条数据势在必行,该如何做呢

一、引言 在当今竞争激烈的商业环境中&#xff0c;高效的仓储管理对于企业的生存和发展至关重要。仓储管理系统&#xff08;WMS&#xff09;作为现代仓储管理的核心工具&#xff0c;其作用不仅仅是简单地记录库存数量和位置&#xff0c;更在于打通仓储全链条数据&#xff0c;实…...

基于Python的校园爱心帮扶管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…...

如何基于pdf2image实现pdf批量转换为图片

最近为了将pdf报告解析成为文本和图片&#xff0c;需要将大量多页的pdf文件拆分下单独的一页一页的图像&#xff0c;以便后续进行OCR和图像处理&#xff0c;因此就需要实现将pdf2image&#xff0c;本文主要结合开源的pdf2image和poppler&#xff0c;实现了pdf转换为png格式图片…...

Tomcat(1) 什么是Tomcat?

Tomcat是一个开源的Web服务器和Servlet容器&#xff0c;它实现了Java Servlet、JavaServer Pages (JSP)、WebSocket和Java EL等Java EE规范。Tomcat由Apache软件基金会维护&#xff0c;是Java应用程序的常用部署平台。 深入理解Tomcat 1. 架构 Tomcat的核心组件包括&#xf…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...