当前位置: 首页 > news >正文

部署stable-diffusion3.5 大模型,文生图

UI 使用推荐的ComfyUI,GitHub 地址,huggingface 需要注册登录,需要下载的文件下面有说明

  1. Dockerfile 文件如下:
FROM nvidia/cuda:12.4.0-base-ubuntu22.04
RUN apt-get update && apt-get install python3 pip git --no-install-recommends -y &&\git clone https://github.com/comfyanonymous/ComfyUI.git &&\pip install torch torchvision torchaudio --index-url https://pypi.tuna.tsinghua.edu.cn/simple --no-cache &&\apt-get clean && apt-get autoclean && apt-get autoremove
WORKDIR /ComfyUI
EXPOSE 8188
RUN pip install --index-url https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt --no-cache
COPY AIGODLIKE-COMFYUI-TRANSLATION custom_nodes/AIGODLIKE-COMFYUI-TRANSLATION
COPY stable-diffusion/sd3.5_large_turbo.safetensors models/checkpoints/
COPY stable-diffusion/vae models/vae
COPY clip models/clip
CMD ["python3", "main.py", "--listen", "0.0.0.0"]
  1. 把需要的文件下载下来拷贝到一个目录,文件夹目录结构如下:
.
├── AIGODLIKE-COMFYUI-TRANSLATION   # 中文包
│   ├── example
│   ├── __init__.py
│   ├── ja-JP
│   ├── ko-KR
│   ├── LocaleMap.js
│   ├── main.js
│   ├── MenuTranslate.js
│   ├── pyproject.toml
│   ├── readme.md
│   ├── ru-RU
│   ├── zh-CN
│   └── zh-TW
├── clip  # 解析器
│   ├── clip_g.safetensors
│   ├── clip_l.safetensors
│   └── t5xxl_fp8_e4m3fn.safetensors
├── Dockerfile
└── stable-diffusion ## 大模型├── sd3.5_large_turbo.safetensors├── SD3.5L_Turbo_example_workflow.json└── vae
  • 需要下载大模型文件,demo 文件,vae 大模型地址
    在这里插入图片描述

  • 文本解析器: 解析器地址
    在这里插入图片描述

  • 语言包: 语言包地址,点击设置可以切换语言到中文,如果不需要可以忽略

  1. 构建镜像,并运行
docker build -t stable-diffusion:3.5-large-turbo-ubuntu22.04-cuda12.4-py310-torch2.5.1 .
docker run --runtime=nvidia --gpus all --rm -p 8188:8188 stable-diffusion:3.5-large-turbo-ubuntu22.04-cuda12.4-py310-torch2.5.1
  1. 访问ComfyUI,把刚才下载的 SD3.5L_Turbo_example_workflow.json 拖到 UI 上,按照步骤执行,在预览图像框里查看生成的图像
    在这里插入图片描述

相关文章:

部署stable-diffusion3.5 大模型,文生图

UI 使用推荐的ComfyUI,GitHub 地址,huggingface 需要注册登录,需要下载的文件下面有说明 Dockerfile 文件如下: FROM nvidia/cuda:12.4.0-base-ubuntu22.04 RUN apt-get update && apt-get install python3 pip git --n…...

数据采集之selenium模拟登录

使用Cookijar完成模拟登录 本博文爬取实例为内部网站,请sduter使用本人账号替换*********(学号),***(姓名)进行登录 from selenium import webdriver from selenium.webdriver.common.by import By from…...

机器学习中的两种主要思路:数据驱动与模型驱动

在机器学习的研究和应用中,如何从数据中提取有价值的信息并做出准确预测,是推动该领域发展的核心问题之一。在这个过程中,机器学习方法主要依赖于两种主要的思路:数据驱动与模型驱动。这两种思路在不同的应用场景中发挥着至关重要…...

【计算机网络】TCP协议面试常考(一)

三次握手和四次挥手是TCP协议中非常重要的机制,它们在多种情况下确保了网络通信的可靠性和安全性。以下是这些机制发挥作用的一些关键场景: 三次握手的必要性: 同步序列号: 三次握手确保了双方的初始序列号(ISN&#…...

C#/.NET/.NET Core学习路线集合,学习不迷路!

前言 C#、.NET、.NET Core、WPF、WinForm、Unity等相关技术的学习、工作路线集合(持续更新)!!! 全面的C#/.NET/.NET Core学习、工作、面试指南:https://github.com/YSGStudyHards/DotNetGuide C#/.NET/.N…...

使用哈希表做计数排序js

function hashSort(arr) {// 创建一个哈希表(对象),统计每个数字出现的次数let hashMap {};arr.forEach(num > {if (hashMap[num]) {hashMap[num] 1;} else {hashMap[num] 1;}});// 根据哈希表的键值对构建排序后的数组let sortedArr …...

京津冀自动驾驶技术行业盛会|2025北京自动驾驶技术展会

“自动驾驶技术”已经成为全球汽车产业的焦点之一。在这个充满创新与变革的时代,“2025北京国际自动驾驶技术展览会”拟定于6月份在北京亦创国际会展中心盛大开幕,为全球自动驾驶技术领域的专业人士、企业以及爱好者们提供了一个交流与展示的平台。作为一…...

Chrome与火狐哪个浏览器的隐私追踪功能更好

当今数字化时代,互联网用户越来越关注在线隐私保护。浏览器作为我们探索网络世界的重要工具,其隐私追踪功能的强弱直接影响到个人信息的安全。本文将对比Chrome和Firefox这两款流行的浏览器,在隐私追踪防护方面的表现,并探讨相关优…...

探索 Python 图像处理的瑞士军刀:Pillow 库

文章目录 探索 Python 图像处理的瑞士军刀:Pillow 库第一部分:背景介绍第二部分:Pillow库是什么?第三部分:如何安装这个库?第四部分:简单的库函数使用方法第五部分:结合场景使用库第…...

JavaScript中的if、else if、else 和 switch

写在前面 在编程中,条件判断是控制程序流程的重要手段。JavaScript 提供了多种方式来进行条件判断,包括 if、else if、else 和 switch。本文将详细介绍这些语句的语法、用法以及一些相关的注意事项。 if、else if 和 else 语法 if、else if 和 else …...

Python 使用 langchain 过程中的错误总结

1. 环境 conda activate langchain pip install -U langchain$ pip show langchain Name: langchain Version: 0.3.7 Summary: Building applications with LLMs through composability Home-page: https://github.com/langchain-ai/langchain Author: Author-email: Licens…...

MySQL基础篇总结

基本SQL语句分类 DDL(数据定义语言) 数据定义语言,用来定义数据库对象(数据库、表、字段)。 数据控制语言,用来创建数据库用户、控制数据库的控制权限。 数据库操作 查询所有数据库: SHOW DATABASES; 查询当前数据库…...

全面解析:网络协议及其应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 # 全面解析:网络协议及其应用 文章目录 网络协议概述定义发展历程主要优势 主要网络协议应用层协议传输层协议网络层…...

一文了解Java序列化

Java 序列化(Serialization)是将对象的状态转换为字节流,以便将对象的状态保存到文件中或通过网络传输的过程。反序列化(Deserialization)则是将字节流恢复为原始对象。Java 序列化主要通过 Serializable 接口实现。 为…...

【前端基础】CSS基础

目标:掌握 CSS 属性基本写法,能够使用文字相关属性美化文章页。 01-CSS初体验 层叠样式表 (Cascading Style Sheets,缩写为 CSS),是一种 样式表 语言,用来描述 HTML 文档的呈现(美化内容&#…...

Linux之selinux和防火墙

selinux(强化的linux) 传统的文件权限与账号的关系:自主访问控制,DAC; 以策略规则制定特定程序读取特定文件:强制访问控制,MAC SELinux是通过MAC的方式来控制管理进程,它控制的主…...

架构零散知识点

1 数据库 1.1 数据库范式 有一个学生表,主键是学号,含有学生号、学生名、班级、班级名,违反了数据库第几范式? --非主属性不依赖于主键,不满足第二范式 有一个订单表,包含以下字段:订单ID&…...

【从零开始的LeetCode-算法】3254. 长度为 K 的子数组的能量值 I

给你一个长度为 n 的整数数组 nums 和一个正整数 k 。一个数组的 能量值 定义为: 如果 所有 元素都是依次 连续 且 上升 的,那么能量值为 最大 的元素。否则为 -1 。 你需要求出 nums 中所有长度为 k 的子数组的能量值。 请你返回一个长度为 n - k 1…...

跨IDE开发

跨IDE开发:多工具协同最佳实践 🛠️ 在现代软件开发中,不同的开发任务往往需要不同的工具。让我们探讨如何高效地在多个IDE间协同工作! 第一部分:IDE协同开发的基础设施 🏗️ 1. 统一的项目配置 为了确保…...

2020年美国总统大选数据分析与模型预测

数据集取自:2020年🇺🇸🇺🇸美国大选数据集 - Heywhale.com 前言 对2020年美国总统大选数据的深入分析,提供各州和县层面的投票情况及选民行为的可视化展示。数据预处理阶段将涉及对异常值的处理&#xff0…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes&#xff0…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...

C#最佳实践:为何优先使用as或is而非强制转换

C#最佳实践:为何优先使用as或is而非强制转换 在 C# 的编程世界里,类型转换是我们经常会遇到的操作。就像在现实生活中,我们可能需要把不同形状的物品重新整理归类一样,在代码里,我们也常常需要将一个数据类型转换为另…...

Spring事务传播机制有哪些?

导语: Spring事务传播机制是后端面试中的必考知识点,特别容易出现在“项目细节挖掘”阶段。面试官通过它来判断你是否真正理解事务控制的本质与异常传播机制。本文将从实战与源码角度出发,全面剖析Spring事务传播机制,帮助你答得有…...