【数据集】【YOLO】【目标检测】道路结冰数据集 1527 张,YOLO目标检测实战训练教程!
数据集介绍
【数据集】道路结冰数据集 1527 张,目标检测,包含YOLO/VOC格式标注。数据集中包含2种分类:“clear_road, ice_road”。数据集来自国内外图片网站和视频截图,部分数据经过数据增强处理。检测范围监控视角检测、无人机视角检测、道路结冰、道路湿滑等,可用于智慧园区、智慧城市、智慧交通。






一、数据概述
道路结冰检测的重要性
冰雪覆盖的路面容易导致车辆失控、打滑、刹车距离增加等问题,从而引发交通事故。为了保障公众的生命财产安全,交通管理部门需要实时了解道路状况,以便及时采取措施,如限速、封闭道路或提供防滑设备等,来提高道路的交通安全性。因此,开发高效、准确的道路结冰检测算法对于提高交通安全具有重要意义。
实际应用效果:
-
基于YOLO的道路结冰检测系统可以广泛应用于高速公路、城市道路、山区道路等场景,为交通管理部门提供及时、准确的预警信息。
-
该系统还可以与其他智能交通系统相结合,如智能导航系统、交通监控系统等,共同构建更加安全、高效的智能交通体系。
该数据集含有1527张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试监控视角检测、无人机视角检测、道路结冰检测、道路湿滑检测。图片格式为jpg格式,标注格式分别为:
YOLO:txt
VOC:xml
数据集均为手工标注,保证标注精确度。
二、数据集文件结构





road_ice/
——Annotations/
——images/
——labels/
——data.yaml
Annotations文件夹为Pascal VOC格式的XML文件 ,images文件夹为jpg格式的数据样本,labels文件夹是YOLO格式的TXT文件,data.yaml是数据集配置文件,包含道路结冰检测的目标分类和加载路径。
三、数据集适用范围
- 目标检测场景
- yolo训练模型或其他模型
- 智慧城市、智慧园区、智慧交通
- 监控视角检测、无人机视角检测、道路结冰、道路湿滑
四、数据集标注结果




1、数据集内容
- 多角度场景:包含行人视角、俯视视角;
- 通过光照变化、阴影干扰、遮挡物进行了数据增强;
- 标注内容:names: ['clear-road', 'ice-road'],总计2个分类。
- 图片总量:1527张图片数据;
- 标注类型:含有Pascal VOC XML格式和yolo TXT格式;
五、训练过程
1、导入训练数据
下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。
下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。
在ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。
data目录结构如下:
data/
——Annotations/ //存放xml文件
——images/ //存放jpg图像
——imageSets/
——labels/
2、数据分割
首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。
import os
import randomtrainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
3、数据集格式化处理
这段代码是用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。
convert_annotation函数
-
这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。
-
它打开XML文件,解析树结构,提取图像的宽度和高度。
-
然后,它遍历每个目标对象(
object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。 -
对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用
convert函数将坐标转换为YOLO格式。 -
最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ['clear_road', 'ice_road'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('data/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text),float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('data/labels/'):os.makedirs('data/labels/')image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()list_file = open('data/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()
4、修改数据集配置文件
train: ../train/images
val: ../valid/images
test: ../test/imagesnc: 1
names: ['clear_road', 'ice_road']
5、执行命令
执行train.py
model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)
也可以在终端执行下述命令:
yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0
六、获取数据集
戳我头像获取数据,或者主页私聊博主哈~
基于QT的目标检测可视化界面
一、环境配置
# 安装torch环境
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装PySide6依赖项
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装opencv-python依赖项
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
二、使用说明
界面功能介绍:
- 原视频/图片区:上半部分左边区域为原视频/图片展示区;
- 检测区:上半部分右边区域为检测结果输出展示区;
- 文本框:打印输出操作日志;
- 加载模型:下拉框绑定本地文件路径,按钮加载路径下的模型文件;
- 置信度阈值:自定义检测区的置信度阈值;
- 文件上传:选择目标文件;
- 开始检测:执行检测程序;
- 停止:终止检测程序;
三、预测效果展示
1、图片检测
切换置信度再次执行:
2、视频检测
四、前端代码
class MyWindow(QtWidgets.QMainWindow):def __init__(self):super().__init__()self.init_gui()self.model = Noneself.timer = QtCore.QTimer()self.timer1 = QtCore.QTimer()self.cap = Noneself.video = Noneself.file_path = Noneself.base_name = Noneself.timer1.timeout.connect(self.video_show)def init_gui(self):self.folder_path = "model_file" # 自定义修改:设置文件夹路径self.setFixedSize(1300, 650)self.setWindowTitle('目标检测') # 自定义修改:设置窗口名称self.setWindowIcon(QIcon("111.jpg")) # 自定义修改:设置窗口图标central_widget = QtWidgets.QWidget(self)self.setCentralWidget(central_widget)main_layout = QtWidgets.QVBoxLayout(central_widget)# 界面上半部分: 视频框topLayout = QtWidgets.QHBoxLayout()self.oriVideoLabel = QtWidgets.QLabel(self)self.detectlabel = QtWidgets.QLabel(self)self.oriVideoLabel.setFixedSize(530, 400)self.detectlabel.setFixedSize(530, 400)self.oriVideoLabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top:75px;')self.detectlabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top: 75px;')# 960 540 1920 960topLayout.addWidget(self.oriVideoLabel)topLayout.addWidget(self.detectlabel)main_layout.addLayout(topLayout)
五、代码获取
YOLO可视化界面
戳我头像获取数据,或者主页私聊博主哈~
注:以上均为原创内容,转载请私聊!!!
相关文章:
【数据集】【YOLO】【目标检测】道路结冰数据集 1527 张,YOLO目标检测实战训练教程!
数据集介绍 【数据集】道路结冰数据集 1527 张,目标检测,包含YOLO/VOC格式标注。数据集中包含2种分类:“clear_road, ice_road”。数据集来自国内外图片网站和视频截图,部分数据经过数据增强处理。检测范围监控视角检测、无人机视…...
Java链表及源码解析
文章目录 创建一个ILindkedList接口创建方法(模拟实现链表方法)创建MyLinkedList来实现接口的方法创建链表节点addFirst方法(新增头部属性)addLast方法(新增到末尾一个属性)remove方法(删除指定属性)addInd…...
十、快速入门go语言之方法
文章目录 方法:one: 方法的概念:star2: 内嵌类型的方法和继承:star2: 多重继承 📅 2024年5月9日 📦 使用版本为1.21.5 方法 1️⃣ 方法的概念 ⭐️ 在Go语言中没有类这个概念,可以使用结构体来实现,那类方法呢?Go也…...
JVM 处理多线程并发执行
JVM(Java Virtual Machine)在处理多线程并发执行方面具有强大的支持,主要依赖于其内置的线程模型、内存模型以及同步机制。 JVM 通过以下关键机制和组件来管理多线程并发执行: 1. 线程模型 Java 线程与操作系统线程:…...
【D3.js in Action 3 精译_039】4.3 D3 面积图的绘制方法及其边界标签的添加
当前内容所在位置: 第四章 直线、曲线与弧线的绘制 ✔️ 4.1 坐标轴的创建(上篇) 4.1.1 D3 中的边距约定(中篇)4.1.2 坐标轴的生成(中篇) 4.1.2.1 比例尺的声明(中篇)4.1…...
布谷直播源码部署服务器关于数据库配置的详细说明
布谷直播源码搭建部署配置接口数据库 /public/db.php(2019年8月后的系统在该路径下配置数据库,老版本继续走下面的操作) 在项目代码中执行命令安装依赖库(⚠️注意:如果已经有了vendor内的依赖文件的就不用执行了&am…...
Xfce桌面设置右键菜单:用右键打开VSCode
前言 AlmaLinux安装VSCode之后始终没有找到如何用右键菜单打开VSCode,比Windows麻烦多了。每次都需要先找到文件夹,然后用系统自带的Open In Terminal打开终端,再输入code .,才能够在当前文件夹中快速打开VSCode。那么࿰…...
【NLP自然语言处理】深入探索Self-Attention:自注意力机制详解
目录 🍔 Self-attention的特点 🍔 Self-attention中的归一化概述 🍔 softmax的梯度变化 3.1 softmax函数的输入分布是如何影响输出的 3.2 softmax函数在反向传播的过程中是如何梯度求导的 3.3 softmax函数出现梯度消失现象的原因 &…...
Pytorch训练时报nan
0. 引言 Pytorch训练时在batchN时loss为nan。经过断点检查发现在batchN-1时,网络参数非nan,输出非nan,但梯度为nan,导致网络参数已经全部被更新为nan,遇到这种情况应该如何排查,如何避免?由于导…...
JavaScript定时器详解:setTimeout与setInterval的使用与注意事项
在JavaScript中,定时器用于在指定的时间间隔后或周期性地执行代码。JavaScript 提供了两种主要的定时器函数:setTimeout 和 setInterval。以下是它们的详细解释和实现方式: 1. setTimeout setTimeout 函数用于在指定的毫秒数后执行一次函数…...
CSS——选择器、PxCook软件、盒子模型
选择器 结构伪类选择器 作用:根据元素的结构关系查找元素。 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0&quo…...
Mysql 大表limit查询优化原理实战
文章目录 1 大表查询无条件优化&原理(入门)2 大表查询带 条件 优化&原理(进阶)2.1 where 后面的查询字段只有一个时,要求该字段是索引字段2.2 where 后面的查询字段有多个时,尽量让查询字段为索引字段且字段值基数大 3 大表查询带 排序 优化&…...
在vscode中开发运行uni-app项目
确保电脑已经安装配置好了node、vue等相关环境依赖 进行项目的创建 vue create -p dcloudio/uni-preset-vue 项目名 vue create -p dcloudio/uni-preset-vue uni-app 选择模版 这里选择【默认模版】 项目创建成功后在vscode中打开 第一次打开项目 pages.json 文件会报错&a…...
【JavaEE初阶 — 多线程】Thread的常见构造方法&属性
目录 Thread类的属性 1.Thread 的常见构造方法 2.Thread 的几个常见属性 2.1 前台线程与后台线程 2.2 setDaemon() 2.3 isAlive() Thread类的属性 Thread 类是JVM 用来管理线程的一个类,换句话说,每个线程都有一个唯一的Thread 对象与之关联&am…...
ctfshow(316)--XSS漏洞--反射性XSS
Web316 进入界面: 审计 显示是关于反射性XSS的题目。 思路 首先想到利用XSS平台解题,看其他师傅的wp提示flag是在cookie中。 当前页面的cookie是flagyou%20are%20not%20admin%20no%20flag。 但是这里我使用XSS平台,显示的cookie还是这样…...
ubuntu22.04安装conda
在 Ubuntu 22.04 上安装 Conda 可以通过以下步骤进行: 下载 Miniconda(轻量级版本的 Conda): 打开终端并运行以下命令以下载 Miniconda 安装脚本: wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-…...
D58【python 接口自动化学习】- python基础之异常
day58 异常捕获 学习日期:20241104 学习目标:异常 -- 74 自定义异常捕获:如何定义业务异常? 学习笔记: 自定义异常的用途 自定义异常的方法 # 抛出一个异常 # raise ValueError(value is error) # ValueError: val…...
Java项目实战II基于Spring Boot的便利店信息管理系统(开发文档+数据库+源码)
目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 在快节奏的…...
Java-日期计算工具类DateCalculator
DateCalculator是用于日期计算的工具类。这个工具类将包括日期的加减、比较、周期计算、日期 范围生成等功能。 import java.time.LocalDate; import java.time.LocalDateTime; import java.time.LocalTime; import java.time.Period; import java.time.temporal.ChronoUnit;…...
单片机串口接收状态机STM32
单片机串口接收状态机stm32 前言 项目的芯片stm32转国产,国产芯片的串口DMA接收功能测试不通过,所以要由原本很容易配置的串口空闲中断触发DMA接收数据的方式转为串口逐字节接收的状态机接收数据 两种方式各有优劣,不过我的芯片已经主频跑…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
libfmt: 现代C++的格式化工具库介绍与酷炫功能
libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全:…...
【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...
虚拟机网络不通的问题(这里以win10的问题为主,模式NAT)
当我们网关配置好了,DNS也配置好了,最后在虚拟机里还是无法访问百度的网址。 第一种情况: 我们先考虑一下,网关的IP是否和虚拟机编辑器里的IP一样不,如果不一样需要更改一下,因为我们访问百度需要从物理机…...
运动控制--BLDC电机
一、电机的分类 按照供电电源 1.直流电机 1.1 有刷直流电机(BDC) 通过电刷与换向器实现电流方向切换,典型应用于电动工具、玩具等 1.2 无刷直流电机(BLDC) 电子换向替代机械电刷,具有高可靠性,常用于无人机、高端家电…...
