当前位置: 首页 > news >正文

【数据集】【YOLO】【目标检测】道路结冰数据集 1527 张,YOLO目标检测实战训练教程!

数据集介绍

数据集】道路结冰数据集 1527 张,目标检测,包含YOLO/VOC格式标注。数据集中包含2种分类:“clear_road, ice_road”。数据集来自国内外图片网站和视频截图,部分数据经过数据增强处理。检测范围监控视角检测、无人机视角检测、道路结冰、道路湿滑等,可用于智慧园区、智慧城市、智慧交通

一、数据概述

道路结冰检测的重要性

冰雪覆盖的路面容易导致车辆失控、打滑、刹车距离增加等问题,从而引发交通事故。为了保障公众的生命财产安全,交通管理部门需要实时了解道路状况,以便及时采取措施,如限速、封闭道路或提供防滑设备等,来提高道路的交通安全性。因此,开发高效、准确的道路结冰检测算法对于提高交通安全具有重要意义。

实际应用效果

  • 基于YOLO的道路结冰检测系统可以广泛应用于高速公路、城市道路、山区道路等场景,为交通管理部门提供及时、准确的预警信息。

  • 该系统还可以与其他智能交通系统相结合,如智能导航系统、交通监控系统等,共同构建更加安全、高效的智能交通体系。

该数据集含有1527张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试监控视角检测、无人机视角检测、道路结冰检测、道路湿滑检测。图片格式为jpg格式,标注格式分别为:

YOLO:txt

VOC:xml

数据集均为手工标注,保证标注精确度。

二、数据集文件结构

road_ice/

——Annotations/

——images/

——labels/

——data.yaml

Annotations文件夹为Pascal VOC格式的XML文件 ,images文件夹为jpg格式的数据样本,labels文件夹是YOLO格式的TXT文件,data.yaml是数据集配置文件,包含道路结冰检测的目标分类和加载路径。

三、数据集适用范围 

  • 目标检测场景
  • yolo训练模型或其他模型
  • 智慧城市、智慧园区、智慧交通
  • 监控视角检测、无人机视角检测、道路结冰、道路湿滑

四、数据集标注结果 

​​​

1、数据集内容 

  1. 多角度场景:包含行人视角、俯视视角;
  2. 通过光照变化、阴影干扰、遮挡物进行了数据增强
  3. 标注内容:names: ['clear-road', 'ice-road'],总计2个分类。
  4. 图片总量:1527张图片数据;
  5. 标注类型:含有Pascal VOC XML格式和yolo TXT格式;

五、训练过程

1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

​​

ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

——Annotations/   //存放xml文件

——images/          //存放jpg图像

——imageSets/

——labels/

2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

import os
import randomtrainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

3、数据集格式化处理

这段代码是用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。

import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ['clear_road', 'ice_road'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('data/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text),float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('data/labels/'):os.makedirs('data/labels/')image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()list_file = open('data/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

4、修改数据集配置文件

train: ../train/images
val: ../valid/images
test: ../test/imagesnc: 1
names: ['clear_road', 'ice_road']

5、执行命令

执行train.py

model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)

也可以在终端执行下述命令:

yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

六、获取数据集 

戳我头像获取数据,或者主页私聊博主哈~

基于QT的目标检测可视化界面

一、环境配置

# 安装torch环境
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装PySide6依赖项
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装opencv-python依赖项
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

二、使用说明

​​​

界面功能介绍:

  • 原视频/图片区:上半部分左边区域为原视频/图片展示区;
  • 检测区:上半部分右边区域为检测结果输出展示区;
  • 文本框:打印输出操作日志;
  • 加载模型:下拉框绑定本地文件路径,按钮加载路径下的模型文件;
  • 置信度阈值:自定义检测区的置信度阈值;
  • 文件上传:选择目标文件;
  • 开始检测:执行检测程序;
  • 停止:终止检测程序;

 三、预测效果展示

1、图片检测

​​​

切换置信度再次执行:

​​​

2、视频检测 

​​​

四、前端代码 

class MyWindow(QtWidgets.QMainWindow):def __init__(self):super().__init__()self.init_gui()self.model = Noneself.timer = QtCore.QTimer()self.timer1 = QtCore.QTimer()self.cap = Noneself.video = Noneself.file_path = Noneself.base_name = Noneself.timer1.timeout.connect(self.video_show)def init_gui(self):self.folder_path = "model_file"  # 自定义修改:设置文件夹路径self.setFixedSize(1300, 650)self.setWindowTitle('目标检测')  # 自定义修改:设置窗口名称self.setWindowIcon(QIcon("111.jpg"))  # 自定义修改:设置窗口图标central_widget = QtWidgets.QWidget(self)self.setCentralWidget(central_widget)main_layout = QtWidgets.QVBoxLayout(central_widget)# 界面上半部分: 视频框topLayout = QtWidgets.QHBoxLayout()self.oriVideoLabel = QtWidgets.QLabel(self)self.detectlabel = QtWidgets.QLabel(self)self.oriVideoLabel.setFixedSize(530, 400)self.detectlabel.setFixedSize(530, 400)self.oriVideoLabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top:75px;')self.detectlabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top: 75px;')# 960 540  1920 960topLayout.addWidget(self.oriVideoLabel)topLayout.addWidget(self.detectlabel)main_layout.addLayout(topLayout)

五、代码获取

YOLO可视化界面

戳我头像获取数据,或者主页私聊博主哈~

注:以上均为原创内容,转载请私聊!!!

相关文章:

【数据集】【YOLO】【目标检测】道路结冰数据集 1527 张,YOLO目标检测实战训练教程!

数据集介绍 【数据集】道路结冰数据集 1527 张,目标检测,包含YOLO/VOC格式标注。数据集中包含2种分类:“clear_road, ice_road”。数据集来自国内外图片网站和视频截图,部分数据经过数据增强处理。检测范围监控视角检测、无人机视…...

Java链表及源码解析

文章目录 创建一个ILindkedList接口创建方法(模拟实现链表方法)创建MyLinkedList来实现接口的方法创建链表节点addFirst方法(新增头部属性)addLast方法(新增到末尾一个属性)remove方法(删除指定属性)addInd…...

十、快速入门go语言之方法

文章目录 方法:one: 方法的概念:star2: 内嵌类型的方法和继承:star2: 多重继承 📅 2024年5月9日 📦 使用版本为1.21.5 方法 1️⃣ 方法的概念 ⭐️ 在Go语言中没有类这个概念,可以使用结构体来实现,那类方法呢?Go也…...

JVM 处理多线程并发执行

JVM(Java Virtual Machine)在处理多线程并发执行方面具有强大的支持,主要依赖于其内置的线程模型、内存模型以及同步机制。 JVM 通过以下关键机制和组件来管理多线程并发执行: 1. 线程模型 Java 线程与操作系统线程:…...

【D3.js in Action 3 精译_039】4.3 D3 面积图的绘制方法及其边界标签的添加

当前内容所在位置: 第四章 直线、曲线与弧线的绘制 ✔️ 4.1 坐标轴的创建(上篇) 4.1.1 D3 中的边距约定(中篇)4.1.2 坐标轴的生成(中篇) 4.1.2.1 比例尺的声明(中篇)4.1…...

布谷直播源码部署服务器关于数据库配置的详细说明

布谷直播源码搭建部署配置接口数据库 /public/db.php(2019年8月后的系统在该路径下配置数据库,老版本继续走下面的操作) 在项目代码中执行命令安装依赖库(⚠️注意:如果已经有了vendor内的依赖文件的就不用执行了&am…...

Xfce桌面设置右键菜单:用右键打开VSCode

前言 AlmaLinux安装VSCode之后始终没有找到如何用右键菜单打开VSCode,比Windows麻烦多了。每次都需要先找到文件夹,然后用系统自带的Open In Terminal打开终端,再输入code .,才能够在当前文件夹中快速打开VSCode。那么&#xff0…...

【NLP自然语言处理】深入探索Self-Attention:自注意力机制详解

目录 🍔 Self-attention的特点 🍔 Self-attention中的归一化概述 🍔 softmax的梯度变化 3.1 softmax函数的输入分布是如何影响输出的 3.2 softmax函数在反向传播的过程中是如何梯度求导的 3.3 softmax函数出现梯度消失现象的原因 &…...

Pytorch训练时报nan

0. 引言 Pytorch训练时在batchN时loss为nan。经过断点检查发现在batchN-1时,网络参数非nan,输出非nan,但梯度为nan,导致网络参数已经全部被更新为nan,遇到这种情况应该如何排查,如何避免?由于导…...

JavaScript定时器详解:setTimeout与setInterval的使用与注意事项

在JavaScript中,定时器用于在指定的时间间隔后或周期性地执行代码。JavaScript 提供了两种主要的定时器函数:setTimeout 和 setInterval。以下是它们的详细解释和实现方式: 1. setTimeout setTimeout 函数用于在指定的毫秒数后执行一次函数…...

CSS——选择器、PxCook软件、盒子模型

选择器 结构伪类选择器 作用&#xff1a;根据元素的结构关系查找元素。 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0&quo…...

Mysql 大表limit查询优化原理实战

文章目录 1 大表查询无条件优化&原理(入门)2 大表查询带 条件 优化&原理(进阶)2.1 where 后面的查询字段只有一个时&#xff0c;要求该字段是索引字段2.2 where 后面的查询字段有多个时&#xff0c;尽量让查询字段为索引字段且字段值基数大 3 大表查询带 排序 优化&…...

在vscode中开发运行uni-app项目

确保电脑已经安装配置好了node、vue等相关环境依赖 进行项目的创建 vue create -p dcloudio/uni-preset-vue 项目名 vue create -p dcloudio/uni-preset-vue uni-app 选择模版 这里选择【默认模版】 项目创建成功后在vscode中打开 第一次打开项目 pages.json 文件会报错&a…...

【JavaEE初阶 — 多线程】Thread的常见构造方法&属性

目录 Thread类的属性 1.Thread 的常见构造方法 2.Thread 的几个常见属性 2.1 前台线程与后台线程 2.2 setDaemon() 2.3 isAlive() Thread类的属性 Thread 类是JVM 用来管理线程的一个类&#xff0c;换句话说&#xff0c;每个线程都有一个唯一的Thread 对象与之关联&am…...

ctfshow(316)--XSS漏洞--反射性XSS

Web316 进入界面&#xff1a; 审计 显示是关于反射性XSS的题目。 思路 首先想到利用XSS平台解题&#xff0c;看其他师傅的wp提示flag是在cookie中。 当前页面的cookie是flagyou%20are%20not%20admin%20no%20flag。 但是这里我使用XSS平台&#xff0c;显示的cookie还是这样…...

ubuntu22.04安装conda

在 Ubuntu 22.04 上安装 Conda 可以通过以下步骤进行&#xff1a; 下载 Miniconda&#xff08;轻量级版本的 Conda&#xff09;&#xff1a; 打开终端并运行以下命令以下载 Miniconda 安装脚本&#xff1a; wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-…...

D58【python 接口自动化学习】- python基础之异常

day58 异常捕获 学习日期&#xff1a;20241104 学习目标&#xff1a;异常 -- 74 自定义异常捕获&#xff1a;如何定义业务异常&#xff1f; 学习笔记&#xff1a; 自定义异常的用途 自定义异常的方法 # 抛出一个异常 # raise ValueError(value is error) # ValueError: val…...

Java项目实战II基于Spring Boot的便利店信息管理系统(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 在快节奏的…...

Java-日期计算工具类DateCalculator

DateCalculator是用于日期计算的工具类。这个工具类将包括日期的加减、比较、周期计算、日期 范围生成等功能。 import java.time.LocalDate; import java.time.LocalDateTime; import java.time.LocalTime; import java.time.Period; import java.time.temporal.ChronoUnit;…...

单片机串口接收状态机STM32

单片机串口接收状态机stm32 前言 项目的芯片stm32转国产&#xff0c;国产芯片的串口DMA接收功能测试不通过&#xff0c;所以要由原本很容易配置的串口空闲中断触发DMA接收数据的方式转为串口逐字节接收的状态机接收数据 两种方式各有优劣&#xff0c;不过我的芯片已经主频跑…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...