当前位置: 首页 > news >正文

江协科技STM32学习- P38 软件SPI读写W25Q64

        🚀write in front🚀  
🔎大家好,我是黄桃罐头,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​ 

💬本系列哔哩哔哩江科大STM32的视频为主以及自己的总结梳理📚 

🚀Projeet source code🚀   

💾工程代码放在了本人的Gitee仓库:iPickCan (iPickCan) - Gitee.com

引用:

STM32入门教程-2023版 细致讲解 中文字幕_哔哩哔哩_bilibili

Keil5 MDK版 下载与安装教程(STM32单片机编程软件)_mdk528-CSDN博客

STM32之Keil5 MDK的安装与下载_keil5下载程序到单片机stm32-CSDN博客

0. 江协科技/江科大-STM32入门教程-各章节详细笔记-查阅传送门-STM32标准库开发_江协科技stm32笔记-CSDN博客

【STM32】江科大STM32学习笔记汇总(已完结)_stm32江科大笔记-CSDN博客

江科大STM32学习笔记(上)_stm32博客-CSDN博客

STM32学习笔记一(基于标准库学习)_电平输出推免-CSDN博客

STM32 MCU学习资源-CSDN博客

stm32学习笔记-作者: Vera工程师养成记

stem32江科大自学笔记-CSDN博客

术语:

英文缩写描述
GPIO:General Purpose Input Onuput通用输入输出
AFIO:Alternate Function Input Output复用输入输出
AO:Analog Output模拟输出
DO:Digital Output数字输出
内部时钟源 CK_INT:Clock Internal内部时钟源
外部时钟源 ETR:External Trigger 时钟源 External 触发
外部时钟源 ETR:External Trigger mode 1外部时钟源 External 触发 时钟模式1
外部时钟源 ETR:External Trigger mode 2外部时钟源 External 触发 时钟模式2
外部时钟源 ITRx:Internal Trigger inputs外部时钟源,ITRx (Internal trigger inputs)内部触发输入
外部时钟源 TIx:exTernal Input pin 外部时钟源 TIx (external input pin)外部输入引脚
CCR:Capture/Comapre Register捕获/比较寄存器
OC:Output Compare输出比较
IC:Input Capture输入捕获
TI1FP1:TI1 Filter Polarity 1Extern Input 1 Filter Polarity 1,外部输入1滤波极性1
TI1FP2:TI1 Filter Polarity 2Extern Input 1 Filter Polarity 2,外部输入1滤波极性2
DMA:Direct Memory Access直接存储器存取

正文:

0. 概述

从 2024/06/12 定下计划开始学习下江协科技STM32课程,接下来将会按照哔站上江协科技STM32的教学视频来学习入门STM32 开发,本文是视频教程 P2 STM32简介一讲的笔记。

感兴趣的一件事:

STM32HAL-最简单的长、短、多击按键框架

STM32HAL-最简单的长、短、多击按键框架(多按键)-CSDN博客


这就是一个简易的操作系统代码(瞎说的),基于时间片调度,没有抢占,但是有任务优先级。也就100行。
https://www.zhihu.com/question/658017543

1.🚚 软件SPI读写W25Q64

接线图

CS(片选)接到PA4 ,DO(从机输出)接到PA6 ,CLK时钟接到PA5 ,DI(从机输入)接到PA7,当然我这里引脚其实并不是任意选的,实际上是接到了硬件SPI的引脚上,这样的话软件SPI和硬件SPI都可以任意切换。

PA6为上拉输出入,PA4,PA5 ,PA7为推挽输出
交换字节:W25Q64支持模式0和模式3,这里一般选择模式0

程序的整体框架:

在这里插入图片描述

指令集:读取ID号时序:起始,先交换发送指令9F,随后连续交换接收3个字节,停止
第一个字节是厂商ID,后两个是设备ID,其中设备ID高8位,表示存储器类型,低8位表示容量。

  • 💎第一个是写使能指令,发送一个指令码06
  • 💎第二个是读状态寄存器1,作用是判断芯片是不是忙状态,要读取BUSY位,是否置1,1表示芯片在忙,0表示芯片不忙了。还要实现一个等待BUSY为0的函数,调用这个函数,BUSY为1,进入等待;BUSY为0,函数执行完毕。
  • 💎第三个是页编程函数,先发送一个指令码02,再发3个字节的地址,最后发数据。
  • 💎第四个扇区擦除,执行扇区擦除,先发送指令20,再发送3个字节的地址,这样指定地址,所在的扇区就会擦除。

 

最后一个读取数据,流程是:交换发送指令03,再发送3个字节的地址,随后转入接收,就可以依次接收数据

MySPI.c

#include "stm32f10x.h"                  // Device header
#include "MySPI.h"void MySPI_W_SS(uint8_t bitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)bitValue);
}void MySPI_W_SCK(uint8_t bitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_5, (BitAction)bitValue);
}void MySPI_W_MOSI(uint8_t bitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_7, (BitAction)bitValue);
}uint8_t MySPI_R_MISO(void)
{return GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6);
}void MySPI_Init()
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef gpioInitStructure;gpioInitStructure.GPIO_Mode = GPIO_Mode_Out_PP;gpioInitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7;gpioInitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &gpioInitStructure);gpioInitStructure.GPIO_Mode = GPIO_Mode_IPU;gpioInitStructure.GPIO_Pin = GPIO_Pin_6;gpioInitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &gpioInitStructure);MySPI_W_SS(1);MySPI_W_SCK(0);	//use SPI mode0}void MySPI_Start(void)
{MySPI_W_SS(0);
}void MySPI_Stop(void)
{MySPI_W_SS(1);
}uint8_t MySPI_SwapByte(uint8_t byteSend)
{uint8_t byteRecv = 0;for(int i=0; i<8; i++){MySPI_W_MOSI(byteSend & (0x80 >> i));		//SPI MOSI发送数据MySPI_W_SCK(1);								//SPI CLK上升沿if(MySPI_R_MISO()) byteRecv |= (0x80 >> i);	//SPI MISO读取数据MySPI_W_SCK(0);								//SPI下降沿}return byteRecv;
}

W25Q64.c

#include "stm32f10x.h"                  // Device header
#include "MySPI.h"
#include "W25Q64.h"void W25Q64_Init(void)
{MySPI_Init();}void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{uint8_t Data =  0;MySPI_Start();	//SPI StartMySPI_SwapByte(0x9F);*MID = MySPI_SwapByte(0xFF);Data = MySPI_SwapByte(0xFF);Data = Data<< 8 | MySPI_SwapByte(0xFF);*DID = Data;MySPI_Stop();	//SPI Stop
}

Main.c

#include "stm32f10x.h"                  // Device header
#include "oled.h"
#include "Countersensor.h"
#include "Encoder.h"
#include "Timer.h"
#include "AD.h"
#include "Delay.h"
#include "MyDMA.h"
#include "UART.h"
#include <stdio.h>
#include "Key.h"
#include "String.h"
#include "LED.h"
#include "MyI2C.h"
#include "MP6050.h"
#include "MP6050_Reg.h"
#include "W25Q64.h"uint8_t MID;
uint16_t DID;int main(int argc, char *argv[])
{OLED_Init();W25Q64_Init();W25Q64_ReadID(&MID, &DID);OLED_ShowHexNum(1, 1, MID, 2);OLED_ShowHexNum(1, 4, DID, 4);while(1)                                                                                 {}return 1;
}

💎现象
注意:写入数据前必须擦除,如不执行擦除,读出的数据=原始数据&写入的数据。

相关文章:

江协科技STM32学习- P38 软件SPI读写W25Q64

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…...

【Triton 教程】低内存 Dropout

Triton 是一种用于并行编程的语言和编译器。它旨在提供一个基于 Python 的编程环境&#xff0c;以高效编写自定义 DNN 计算内核&#xff0c;并能够在现代 GPU 硬件上以最大吞吐量运行。 更多 Triton 中文文档可访问 →https://triton.hyper.ai/ 在本教程中&#xff0c;您将编…...

npx创建项目时,error fetch failed.TypeError: fetch failed

npx创建项目时&#xff0c;报以下错误&#xff1a; error fetch failed. TypeError: fetch failedat node:internal/deps/undici/undici:12345:11at process.processTicksAndRejections (node:internal/process/task_queues:95:5)at async getTemplateVersion (C:\Users\ymt30…...

《Kotlin实战》-附录

附录 本部分内容只是简单列举下Kotlin应用以便指引进一步深入学习Kotlin。 附录A&#xff1a;构建Kotlin项目 本节只会记录下gradle的应用&#xff0c;其他需要时请自行搜索查看。 A.1 用Gradle构建Kotlin代码的项目 构建Kotlin项目的标准Gradle脚本如下&#xff1a; bui…...

yelp数据集上识别潜在的热门商家

yelp数据集是研究B2C业态的一个很好的数据集&#xff0c;要识别潜在的热门商家是一个多维度的分析过程&#xff0c;涉及用户行为、商家特征和社区结构等多个因素。从yelp数据集里我们可以挖掘到下面信息有助于识别热门商家 用户评分和评论分析 评分均值: 商家的平均评分是反映其…...

【Linux】进程信号全攻略(一)

&#x1f308; 个人主页&#xff1a;Zfox_ &#x1f525; 系列专栏&#xff1a;Linux 目录 一&#xff1a;&#x1f525; 信号的概念 二&#xff1a;&#x1f525; 信号产生的方式 &#x1f98b; 使用键盘&#x1f98b; 系统调用函数&#x1f98b; 软件条件&#x1f98b; 进程异…...

linux文件重命名

Linux文件重命名 文件名显示异常问题出在哪里批量改名扩展 文件名显示异常 跑测CTS&#xff0c;linux环境看跑测结果log file显示没问题&#xff0c;倘若windows下看log file名却显示异常&#xff0c;不太方便操作。 问题出在哪里 linux环境下文件名可以显示正常&#xff0…...

如何选择适合的AWS EC2实例类型

在云计算的世界中&#xff0c;Amazon Web Services&#xff08;AWS&#xff09;提供了丰富的服务&#xff0c;其中Elastic Compute Cloud&#xff08;EC2&#xff09;是最受欢迎的服务之一。选择合适的EC2实例类型对于确保应用程序的性能和成本效益至关重要。我们九河云通过本文…...

【Uniapp】Uniapp Android原生插件开发指北

前言 在uniapp开发中当HBuilderX中提供的能力无法满足App功能需求&#xff0c;需要通过使用Andorid/iOS原生开发实现时&#xff0c;或者是第三方公司提供的是Android的库&#xff0c;这时候可使用App离线SDK开发原生插件来扩展原生能力。 插件类型有两种&#xff0c;Module模…...

【随手笔记】FLASH-W25Q16(三)

#include "bsp_w25q16.h"/*内部函数声明区*/ static HAL_StatusTypeDef bsp_w25q_Transmit(uint8_t * T_pData, uint16_t T_Size); static HAL_StatusTypeDef bsp_w25q_Receive(uint8_t * R_pData, uint16_t R_Size);/*内部函数定义区*//* 函数参数&#xff1a;1、T_…...

2024软件测试面试热点问题

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 大厂面试热点问题 1、测试人员需要何时参加需求分析&#xff1f; 如果条件循序 原则上来说 是越早介入需求分析越好 因为测试人员对需求理解越深刻 对测试工…...

【JAVA】java 企业微信信息推送

前言 JAVA中 将信息 推送到企业微信 // 企微消息推送messageprivate String getMessage(String name, String problemType, String pushResults, Long orderId,java.util.Date submitTime, java.util.Date payTime) {String message "对接方&#xff1a;<font color\…...

介绍一下数组(c基础)(smart 版)

c初期&#xff0c;记住规则&#xff0c;用规则。 我只是介绍规则。&#xff08;有详细版&#xff0c;这适合smart人看&#xff09; 数组&#xff08;同类型&#xff09; int arr[n] {} ; int 是 元素类型。 int arr[n] {} ; arr为标识符。 {} 集合&#xff0c;元素有次…...

Java项目实战II基于Spring Boot的个人云盘管理系统设计与实现(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。 一、前言 基于Spring Boot的个人云盘管理系统设计…...

探索数据科学与大数据技术专业本科生的广阔就业前景

随着信息技术的不断发展&#xff0c;数据科学与大数据技术已经成为各大行业的关键推动力。在这样一个数据驱动的时代&#xff0c;越来越多的企业依赖数据来驱动决策、优化运营和创造价值。因此&#xff0c;数据科学与大数据技术专业的本科生在就业市场上具有广阔的前景和多样的…...

微服务架构面试内容整理-Zuul

Zuul 是由 Netflix 开发的一个边缘服务(API 网关),用于动态路由、监控、认证、以及对微服务架构中的请求进行过滤。它在微服务架构中扮演着重要的角色,提供了一种集中管理和控制服务访问的方式。以下是 Zuul 的主要特点、工作原理和使用场景: 主要特点 1. 动态路由: Zuu…...

解决Knife4j 接口界面UI中文乱码问题

1、查看乱码情况 2、修改 编码设置 3、删除 target 文件 项目重新启动 被坑死了...

微服务架构面试内容整理-Sleuth

Spring Cloud Sleuth 是一个分布式追踪工具&#xff0c;用于监控微服务系统中请求的传播情况。它通过在微服务之间传递追踪信息&#xff0c;帮助开发者理解系统的行为&#xff0c;快速定位性能瓶颈和问题。以下是 Sleuth 的主要特点、工作原理和使用场景&#xff1a; 主要特点 …...

Go语言的接口示例

Go语言的接口(interface)是一种轻量级的多态性实现方式,是构建高扩展性、高复用性代码的利器。Go语言的接口非常灵活,不要求显式的实现声明,只要一个类型实现了接口规定的方法,它就可以被视为该接口的实现者。在本篇博客中,我们将通过多个实际示例,探讨Go语言接口的使用…...

【Apache ECharts】<农作物病害发生防治面积>

在vs Code里打开&#xff0c; 实现 1. 首先引入 echarts.min.js 资源 2. 在body部分设一个 div&#xff0c;设置 id 为 main 3. 设置 script 3.1 基于准备好的dom&#xff0c;初始化echarts实例 var myChart echarts.init(document.getElementById(main)); 3.2 指定图表的…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...