tensorflow案例5--基于改进VGG16模型的马铃薯识别,准确率提升0.6%,计算量降低78.07%
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
前言
- 本次采用VGG16模型进行预测,准确率达到了98.875,但是修改VGG16网络结构, 准确率达到了0.9969,并且计算量下降78.07%
1、API积累
VGG16简介
VGG优缺点分析:
- VGG优点
VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。
- VGG缺点
1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。
后面优化也是基于VGG的缺点来进行
VGG结构图如下(PPT绘制):

API积累
🚄 优化
- shuffle() :打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
- prefetch() :预取数据,加速运行,TensorFlow的prefetch方法用于在GPU执行计算时,由CPU预处理下一个批次的数据,实现生产者/消费者重叠,提高训练效率,参考本专栏案例一:https://yxzbk.blog.csdn.net/article/details/142862154
- cache() :将数据集缓存到内存当中,加速运行
💂 像素归一化
讲像素映射到—> [0, 1]中,代码如下:
# 归一化数据
normalization_layer = layers.experimental.preprocessing.Rescaling(1.0 / 255)# 训练集和验证集归一化
train_ds = train_ds.map(lambda x, y : (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y : (normalization_layer(x), y))
💛 优化器
本文全连接层最后一层采用softmax,故优化器为SparseCategoricalCrossentropy。
SparseCategoricalCrossentropy函数注意事项:
from_logits参数:
- 布尔值,默认值为
False。 - 当为
True时,函数假设传入的预测值是未经过激活函数处理的原始 logits 值。如果模型的最后一层没有使用 softmax 激活函数(即返回 logits),需要将from_logits设置为True。 - 当为
False时,函数假设传入的预测值已经是经过 softmax 处理的概率分布。
2、案例
1、数据处理
1、导入库
import tensorflow as tf
from tensorflow.keras import models, layers, datasets
import matplotlib.pyplot as plt
import numpy as np # 判断支持gpu
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]tf.config.experimental.set_memory_growth(gpu0, True)tf.config.set_visible_devices([gpu0], "GPU")gpus
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
2、查看数据目录,获取类别
数据存储格式:data/ 下每个类别分别存储在不同模块中
import os, pathlibdata_dir = './data/'
data_dir = pathlib.Path(data_dir)# 查看data_dir下的所有文件名
classnames = os.listdir(data_dir)
classnames
['Dark', 'Green', 'Light', 'Medium']
3、导入数据与划分数据集
# 训练集 : 测试集 = 8 :2batch_size = 32
img_width, img_height = 224, 224train_ds = tf.keras.preprocessing.image_dataset_from_directory('./data/',validation_split = 0.2,batch_size=batch_size,image_size = (img_width, img_height),shuffle = True,subset='training',seed=42
)val_ds = tf.keras.preprocessing.image_dataset_from_directory('./data/',validation_split = 0.2,batch_size=batch_size,image_size = (img_width, img_height),shuffle = True,subset='validation',seed=42
)
Found 1200 files belonging to 4 classes.
Using 960 files for training.
Found 1200 files belonging to 4 classes.
Using 240 files for validation.
# 查看数据格式
for X, y in train_ds.take(1):print("[N, W, H, C]", X.shape)print("lables: ", y)break
[N, W, H, C] (32, 224, 224, 3)
lables: tf.Tensor([0 0 2 3 1 1 1 3 0 1 2 2 2 1 0 2 0 2 1 0 0 1 2 1 3 2 2 2 1 0 2 3], shape=(32,), dtype=int32)
# 查看原始数据像素
imgs, labelss = next(iter(train_ds)) # 获取一批数据
first = imgs[0]
print(first.shape)
print(np.min(first), np.max(first))
(224, 224, 3)
0.0 255.0
4、展示一批数据
plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):for i in range(20):plt.subplot(5, 10, i + 1) # H, Wplt.imshow(images[i].numpy().astype("uint8"))plt.title(classnames[labels[i]])plt.axis('off')plt.show()

5、配置数据集与归一化数据
- shuffle() :打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
- prefetch() :预取数据,加速运行,TensorFlow的prefetch方法用于在GPU执行计算时,由CPU预处理下一个批次的数据,实现生产者/消费者重叠,提高训练效率,参考本专栏案例一:https://yxzbk.blog.csdn.net/article/details/142862154
- cache() :将数据集缓存到内存当中,加速运行
# 加速
# 变量名比较复杂,但是代码比较固定
from tensorflow.data.experimental import AUTOTUNEAUTOTUNE = tf.data.experimental.AUTOTUNE# 打乱加速
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
# 归一化数据
normalization_layer = layers.experimental.preprocessing.Rescaling(1.0 / 255)# 训练集和验证集归一化
train_ds = train_ds.map(lambda x, y : (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y : (normalization_layer(x), y))
# 查看归一化数据
image_batch, label_batch = next(iter(val_ds))
# 取一个元素
first_image = image_batch[0]# 查看
print(np.min(first_image), np.max(first_image)) # 查看像素最大值,最小值
print(image_batch.shape)
print(first_image.shape)
0.0 1.0
(32, 224, 224, 3)
(224, 224, 3)
2024-11-08 18:37:15.334784: W tensorflow/core/kernels/data/cache_dataset_ops.cc:856] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
2、手动搭建VGG16网络
def VGG16(class_num, input_shape):inputs = layers.Input(input_shape)# 1st blockx = layers.Conv2D(64, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(inputs)x = layers.Conv2D(64, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)# 2nd blockx = layers.Conv2D(128, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.Conv2D(128, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)# 3rd blockx = layers.Conv2D(256, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.Conv2D(256, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.Conv2D(256, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)# 4th blockx = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)# 5th blockx = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.Conv2D(512, kernel_size=(3, 3), activation='relu', strides=(1, 1), padding='same')(x)x = layers.MaxPooling2D((2, 2), strides=(2, 2))(x)# 全连接层, 这里修改以下x = layers.Flatten()(x)x = layers.Dense(4096, activation='relu')(x)x = layers.Dense(4096, activation='relu')(x)# 最后一层用激活函数:softmaxout_shape = layers.Dense(class_num, activation='softmax')(x)# 创建模型model = models.Model(inputs=inputs, outputs=out_shape)return modelmodel = VGG16(len(classnames), (img_width, img_height, 3))
model.summary()
Model: "model"
_________________________________________________________________Layer (type) Output Shape Param #
=================================================================input_1 (InputLayer) [(None, 224, 224, 3)] 0 conv2d (Conv2D) (None, 224, 224, 64) 1792 conv2d_1 (Conv2D) (None, 224, 224, 64) 36928 max_pooling2d (MaxPooling2D (None, 112, 112, 64) 0 ) conv2d_2 (Conv2D) (None, 112, 112, 128) 73856 conv2d_3 (Conv2D) (None, 112, 112, 128) 147584 max_pooling2d_1 (MaxPooling (None, 56, 56, 128) 0 2D) conv2d_4 (Conv2D) (None, 56, 56, 256) 295168 conv2d_5 (Conv2D) (None, 56, 56, 256) 590080 conv2d_6 (Conv2D) (None, 56, 56, 256) 590080 max_pooling2d_2 (MaxPooling (None, 28, 28, 256) 0 2D) conv2d_7 (Conv2D) (None, 28, 28, 512) 1180160 conv2d_8 (Conv2D) (None, 28, 28, 512) 2359808 conv2d_9 (Conv2D) (None, 28, 28, 512) 2359808 max_pooling2d_3 (MaxPooling (None, 14, 14, 512) 0 2D) conv2d_10 (Conv2D) (None, 14, 14, 512) 2359808 conv2d_11 (Conv2D) (None, 14, 14, 512) 2359808 conv2d_12 (Conv2D) (None, 14, 14, 512) 2359808 max_pooling2d_4 (MaxPooling (None, 7, 7, 512) 0 2D) flatten (Flatten) (None, 25088) 0 dense (Dense) (None, 4096) 102764544 dense_1 (Dense) (None, 4096) 16781312 dense_2 (Dense) (None, 4) 16388 =================================================================
Total params: 134,276,932
Trainable params: 134,276,932
Non-trainable params: 0
_________________________________________________________________
3、模型的训练
1、设置超参数
learn_rate = 1e-4# 动态学习率
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(learn_rate,decay_steps=20,decay_rate=0.95,staircase=True
)# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=learn_rate)# 设置超参数
model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['accuracy']
)
2、模型训练
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping# 设置训练次数
epochs = 20# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy',min_delta=0.001,patience=20,verbose=1)# 保存最佳模型
checkpointer = ModelCheckpoint('best_model.h5',monitor='val_accuracy',verbose=1,save_best_only=True,save_weight_only=True)history = model.fit(x=train_ds,validation_data=val_ds,epochs=epochs,verbose=1,callbacks=[earlystopper, checkpointer]
)
Epoch 1/20
2024-11-08 18:37:27.650111: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8101
2024-11-08 18:37:31.754452: I tensorflow/stream_executor/cuda/cuda_blas.cc:1786] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
30/30 [==============================] - ETA: 0s - loss: 1.3401 - accuracy: 0.3094
Epoch 1: val_accuracy improved from -inf to 0.55833, saving model to best_model.h5
30/30 [==============================] - 17s 255ms/step - loss: 1.3401 - accuracy: 0.3094 - val_loss: 0.9073 - val_accuracy: 0.5583
Epoch 2/20
30/30 [==============================] - ETA: 0s - loss: 0.9208 - accuracy: 0.5406
Epoch 2: val_accuracy improved from 0.55833 to 0.63333, saving model to best_model.h5
30/30 [==============================] - 7s 223ms/step - loss: 0.9208 - accuracy: 0.5406 - val_loss: 0.6053 - val_accuracy: 0.6333
Epoch 3/20
30/30 [==============================] - ETA: 0s - loss: 0.6325 - accuracy: 0.6594
Epoch 3: val_accuracy did not improve from 0.63333
30/30 [==============================] - 4s 128ms/step - loss: 0.6325 - accuracy: 0.6594 - val_loss: 0.7538 - val_accuracy: 0.5542
Epoch 4/20
30/30 [==============================] - ETA: 0s - loss: 0.5219 - accuracy: 0.7115
Epoch 4: val_accuracy improved from 0.63333 to 0.82083, saving model to best_model.h5
30/30 [==============================] - 7s 246ms/step - loss: 0.5219 - accuracy: 0.7115 - val_loss: 0.4044 - val_accuracy: 0.8208
Epoch 5/20
30/30 [==============================] - ETA: 0s - loss: 0.3322 - accuracy: 0.8771
Epoch 5: val_accuracy improved from 0.82083 to 0.86667, saving model to best_model.h5
30/30 [==============================] - 7s 238ms/step - loss: 0.3322 - accuracy: 0.8771 - val_loss: 0.3286 - val_accuracy: 0.8667
Epoch 6/20
30/30 [==============================] - ETA: 0s - loss: 0.1433 - accuracy: 0.9573
Epoch 6: val_accuracy improved from 0.86667 to 0.95417, saving model to best_model.h5
30/30 [==============================] - 7s 230ms/step - loss: 0.1433 - accuracy: 0.9573 - val_loss: 0.1310 - val_accuracy: 0.9542
Epoch 7/20
30/30 [==============================] - ETA: 0s - loss: 0.0982 - accuracy: 0.9594
Epoch 7: val_accuracy improved from 0.95417 to 0.97917, saving model to best_model.h5
30/30 [==============================] - 7s 233ms/step - loss: 0.0982 - accuracy: 0.9594 - val_loss: 0.0739 - val_accuracy: 0.9792
Epoch 8/20
30/30 [==============================] - ETA: 0s - loss: 0.0630 - accuracy: 0.9802
Epoch 8: val_accuracy did not improve from 0.97917
30/30 [==============================] - 4s 127ms/step - loss: 0.0630 - accuracy: 0.9802 - val_loss: 0.2461 - val_accuracy: 0.9250
Epoch 9/20
30/30 [==============================] - ETA: 0s - loss: 0.1089 - accuracy: 0.9625
Epoch 9: val_accuracy improved from 0.97917 to 0.98333, saving model to best_model.h5
30/30 [==============================] - 6s 217ms/step - loss: 0.1089 - accuracy: 0.9625 - val_loss: 0.0717 - val_accuracy: 0.9833
Epoch 10/20
30/30 [==============================] - ETA: 0s - loss: 0.0392 - accuracy: 0.9885
Epoch 10: val_accuracy did not improve from 0.98333
30/30 [==============================] - 4s 126ms/step - loss: 0.0392 - accuracy: 0.9885 - val_loss: 0.0901 - val_accuracy: 0.9708
Epoch 11/20
30/30 [==============================] - ETA: 0s - loss: 0.0297 - accuracy: 0.9854
Epoch 11: val_accuracy improved from 0.98333 to 0.98750, saving model to best_model.h5
30/30 [==============================] - 7s 232ms/step - loss: 0.0297 - accuracy: 0.9854 - val_loss: 0.0629 - val_accuracy: 0.9875
Epoch 12/20
30/30 [==============================] - ETA: 0s - loss: 0.0331 - accuracy: 0.9885
Epoch 12: val_accuracy did not improve from 0.98750
30/30 [==============================] - 4s 127ms/step - loss: 0.0331 - accuracy: 0.9885 - val_loss: 0.0384 - val_accuracy: 0.9875
Epoch 13/20
30/30 [==============================] - ETA: 0s - loss: 0.1043 - accuracy: 0.9708
Epoch 13: val_accuracy did not improve from 0.98750
30/30 [==============================] - 4s 128ms/step - loss: 0.1043 - accuracy: 0.9708 - val_loss: 0.0445 - val_accuracy: 0.9833
Epoch 14/20
30/30 [==============================] - ETA: 0s - loss: 0.0352 - accuracy: 0.9833
Epoch 14: val_accuracy did not improve from 0.98750
30/30 [==============================] - 4s 134ms/step - loss: 0.0352 - accuracy: 0.9833 - val_loss: 0.1387 - val_accuracy: 0.9500
Epoch 15/20
30/30 [==============================] - ETA: 0s - loss: 0.1128 - accuracy: 0.9594
Epoch 15: val_accuracy did not improve from 0.98750
30/30 [==============================] - 4s 128ms/step - loss: 0.1128 - accuracy: 0.9594 - val_loss: 0.4397 - val_accuracy: 0.8125
Epoch 16/20
30/30 [==============================] - ETA: 0s - loss: 0.0949 - accuracy: 0.9646
Epoch 16: val_accuracy did not improve from 0.98750
30/30 [==============================] - 4s 130ms/step - loss: 0.0949 - accuracy: 0.9646 - val_loss: 0.1068 - val_accuracy: 0.9500
Epoch 17/20
30/30 [==============================] - ETA: 0s - loss: 0.0618 - accuracy: 0.9781
Epoch 17: val_accuracy did not improve from 0.98750
30/30 [==============================] - 4s 128ms/step - loss: 0.0618 - accuracy: 0.9781 - val_loss: 0.1663 - val_accuracy: 0.9292
Epoch 18/20
30/30 [==============================] - ETA: 0s - loss: 0.0351 - accuracy: 0.9854
Epoch 18: val_accuracy did not improve from 0.98750
30/30 [==============================] - 4s 128ms/step - loss: 0.0351 - accuracy: 0.9854 - val_loss: 0.0687 - val_accuracy: 0.9792
Epoch 19/20
30/30 [==============================] - ETA: 0s - loss: 0.0609 - accuracy: 0.9781
Epoch 19: val_accuracy did not improve from 0.98750
30/30 [==============================] - 4s 128ms/step - loss: 0.0609 - accuracy: 0.9781 - val_loss: 0.0963 - val_accuracy: 0.9708
Epoch 20/20
30/30 [==============================] - ETA: 0s - loss: 0.0263 - accuracy: 0.9896
Epoch 20: val_accuracy did not improve from 0.98750
30/30 [==============================] - 4s 127ms/step - loss: 0.0263 - accuracy: 0.9896 - val_loss: 0.2104 - val_accuracy: 0.9458
- 最好效果:val_accuracy did not improve from 0.98750
4、结果显示
# 获取训练集和验证集损失率和准确率
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

3、优化
讲全连接层进行优化,对其减少全连接层神经元的数量:
# 原来
x = layers.Flatten()(x)
x = layers.Dense(4096, activation='relu')(x)
x = layers.Dense(4096, activation='relu')(x)
# 最后一层用激活函数:softmax
out_shape = layers.Dense(class_num, activation='softmax')(x)# 修改
x = layers.Flatten()(x)
x = layers.Dense(1024, activation='relu')(x)
x = layers.Dense(512, activation='relu')(x)
# 最后一层用激活函数:softmax
out_shape = layers.Dense(class_num, activation='softmax')(x)
修改效果:loss: 0.0166 - accuracy: 0.9969,准确率提升:0.6%个百分点,但是计算量确实大量减少

修改前的全连接层参数数量
- 第一个
Dense层:输入 25088,输出 4096- 参数数量:( (25088 + 1) \times 4096 = 102764544 )
- 第二个
Dense层:输入 4096,输出 4096- 参数数量:( (4096 + 1) \times 4096 = 16781312 )
- 输出层:输入 4096,输出 4
- 参数数量:( (4096 + 1) \times 4 = 16388 )
总参数数量:( 102764544 + 16781312 + 16388 = 119562244 )
修改后的全连接层参数数量
- 第一个
Dense层:输入 25088,输出 1024- 参数数量:( (25088 + 1) \times 1024 = 25690112 )
- 第二个
Dense层:输入 1024,输出 512- 参数数量:( (1024 + 1) \times 512 = 524800 )
- 输出层:输入 512,输出 4
- 参数数量:( (512 + 1) \times 4 = 2052 )
总参数数量:( 25690112 + 524800 + 2052 = 26216964 )
计算减少的百分比
减少的参数数量:
119562244−26216964=93345280
减少的百分比:
93345280 119562244 × 100 % ≈ 78.07 % \frac{93345280}{119562244}\times100\%\approx78.07\% 11956224493345280×100%≈78.07%
因此,修改后计算量(以参数数量衡量)减少了约 78.07%。
相关文章:
tensorflow案例5--基于改进VGG16模型的马铃薯识别,准确率提升0.6%,计算量降低78.07%
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 前言 本次采用VGG16模型进行预测,准确率达到了98.875,但是修改VGG16网络结构, 准确率达到了0.9969,并且计算量…...
代码中的设计模式-策略模式
假如我们有一段代码,有很多的if else function executeAction(type) {if (type A) {console.log(Action A);} else if (type B) {console.log(Action B);} else if (type C) {console.log(Action C);} else {console.log(Unknown action);} }executeAction(A); // 输出: Ac…...
后端Node学习项目-项目基础搭建
前言 各位好,我是前端SkyRain。最近为了响应公司号召,开始对后端知识的学习,作为纯粹小白,记录下每一步的操作流程。 项目仓库:https://gitee.com/sky-rain-drht/drht-node 因为写了文档,代码里注释不是很…...
Python | Leetcode Python题解之第538题把二叉搜索树转换为累加树
题目: 题解: class Solution:def convertBST(self, root: TreeNode) -> TreeNode:def getSuccessor(node: TreeNode) -> TreeNode:succ node.rightwhile succ.left and succ.left ! node:succ succ.leftreturn succtotal 0node rootwhile nod…...
【ZeroMQ 】ZeroMQ中inproc优势有哪些?与其它传输协议有哪些不同?
inproc 是 ZeroMQ 提供的一种传输协议,用于在同一进程内的不同线程之间进行高效的通信。与其他传输协议(如 tcp、ipc 等)不同,inproc 专门针对线程间通信进行了优化,具有极低的延迟和开销。以下是 inproc 的底层原理和…...
spark的学习-03
RDD的创建的两种方式: 方式一:并行化一个已存在的集合 方法:parallelize 并行的意思 将一个集合转换为RDD 方式二:读取外部共享存储系统 方法:textFile、wholeTextFile、newAPIHadoopRDD等 读取外部存储系统的数…...
一文了解Android SELinux
在Android系统中,SELinux(Security-Enhanced Linux)是一个增强的安全机制,用于对系统进行强制访问控制(Mandatory Access Control,MAC)。它限制了应用程序和进程的访问权限,提供了更…...
数据血缘追踪是如何在ETL过程中发挥作用?
在大数据环境下,数据血缘追踪具有重要意义,它能够帮助用户了解数据的派生关系、变换过程和使用情况,进而提高数据的可信度和可操作性。通过数据血缘追踪,ETL用户可以准确追溯数据的来源,快速排查数据异常和问题。 一、…...
跟我学C++中级篇——生产中如何调试程序
一、程序的BUG和异常 程序不是发布到生产环境就万事大吉了。没有人敢保证自己写的代码没有BUG,放心,说这种话的人,基本可以断定是小白。如果在开发阶段出现问题,还是比较好解决的,但是如果真到了生产上,可…...
Python爬虫实战 | 爬取网易云音乐热歌榜单
网易云音乐热歌榜单爬虫实战 环境准备 Python 3.xrequests 库BeautifulSoup 库 安装依赖 pip install requests beautifulsoup4代码 import requests from bs4 import BeautifulSoupdef get_cloud_music_hot_songs():url "http://music.163.com/#/discover/playlist…...
apk因检测是否使用代理无法抓包绕过方式
最近学习了如何在模拟器上抓取APP的包,APP防恶意行为的措施可分为三类: (1)反模拟器调试 (2)反代理 (3)反证书检验 第一种情况: 有的app检验是否使用系统代理,…...
DevOps业务价值流:架构设计最佳实践
系统设计阶段作为需求与研发之间的桥梁,在需求设计阶段的原型设计评审环节,尽管项目组人员可能未完全到齐,但关键角色必须到位,包括技术组长和测试组长。这一安排旨在同步推进两项核心任务:一是完成系统的架构设计&…...
计算机网络——SDN
分布式控制路由 集中式控制路由...
开源数据库 - mysql - innodb源码阅读 - master线程(一)
master struct /** The master thread controlling the server. */void srv_master_thread() {DBUG_TRACE;srv_slot_t *slot; // 槽位THD *thd create_internal_thd(); // 创建内部线程ut_ad(!srv_read_only_mode); //断言 srv_read_only_mode 为 falsesrv_main_thread_proce…...
vscode ssh连接autodl失败
autodl服务器已开启,vscode弹窗显示连接失败 0. 检查状态 这里的端口和主机根据自己的连接更改 ssh -p 52165 rootregion-45.autodl.pro1. 修改config权限 按返回的路径找到config文件 右键--属性--安全--高级--禁用继承--从此对象中删除所有已继承的权限--添加…...
文件系统和日志管理 附实验:远程访问第一台虚拟机日志
文件系统和日志管理 文件系统:文件系统提供了一个接口,用户用来访问硬件设备(硬盘)。 硬件设备上对文件的管理 文件存储在硬盘上,硬盘最小的存储单位是512字节,扇区。 文件在硬盘上的最小存储单位&…...
云上拼团GO指南——腾讯云博客部署案例,双11欢乐GO
知孤云出岫-CSDN博客 目录 腾讯云双11活动介绍 一.双十一活动入口 二.活动亮点 (一)双十一上云拼团Go (二)省钱攻略 (三)上云,多类型服务器供您选择 三.会员双十一冲榜活动 (一)活动内容 &#x…...
【VScode】VScode内的ChatGPT插件——CodeMoss全解析与实用教程
在当今快速发展的编程世界中,开发者们面临着越来越多的挑战。如何提高编程效率,如何快速获取解决方案,成为了每位开发者心中的疑问。今天,我们将深入探讨一款颠覆传统编程体验的插件——CodeMoss,它将ChatGPT的强大功能…...
水库大坝安全监测预警方法
一、监测目标 为了确保水库大坝的结构安全性和运行稳定性,我们需要采取一系列措施来预防和减少因自然灾害或其他潜在因素所引发的灾害损失。这不仅有助于保障广大人民群众的生命财产安全,还能确保水资源的合理利用和可持续发展。通过加强大坝的监测和维护…...
深度学习:微调(Fine-tuning)详解
微调(Fine-tuning)详解 微调(Fine-tuning)是机器学习中的一个重要概念,特别是在深度学习和自然语言处理(NLP)领域。该过程涉及调整预训练模型的参数,以适应特定的任务或数据集。以下…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
Python常用模块:time、os、shutil与flask初探
一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...
Linux-进程间的通信
1、IPC: Inter Process Communication(进程间通信): 由于每个进程在操作系统中有独立的地址空间,它们不能像线程那样直接访问彼此的内存,所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...
LangChain【6】之输出解析器:结构化LLM响应的关键工具
文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器?1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...
