当前位置: 首页 > news >正文

BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测

BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测

目录

    • BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测
      • 效果一览
      • 基本介绍
      • 模型搭建
      • 程序设计
      • 参考资料

效果一览

1
2
3

4
5
6
7
8

基本介绍

MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测。基于贝叶斯(bayes)优化卷积神经网络-长短期记忆网络(CNN-LSTM)回归预测,BO-CNN-LSTM/Bayes-CNN-LSTM多输入单输出模型。
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
3.运行环境matlab2020b及以上。

模型搭建

  • CNN-LSTM模型结合了CNN和LSTM的优点,CNN-LSTM网络模型如图1所示,本文使用的CNN-LSTM模型的第一部分是由卷积层和最大值组成的CNN部分池化层,对原始数据进行预处理并输入CNN卷积层,利用卷积核自适应提取生命特征,卷积层将遍历输入信息,将卷积核权重与局部序列进行卷积运算体管信息得到初步的特征矩阵,比原始序列数据(矩阵)更具表现力。
  • 本文使用的池化层是最大池化层,池化操作对提取的特征进行数据降维,避免模型过拟合,保留主要特征。最大池化层将前一个卷积层得到的特征矩阵作为输入,在这个矩阵上滑动一个池化窗口,在每一次滑动中取池化窗口的最大值,输出一个更具表现力的特征矩阵。
  • 池化后,连接一个 LSTM 层,提取相关向量由CNN构造成一个长期的时间序列作为LSTM的输入数据。卷积层将卷积层的数据展平(Flatten),模型中加入Flatten,将(height,width,channel)的数据压缩成一个长高宽通道的一维数组,然后我们可以添加直接密集层。
  • 对卷积池化数据压缩特征操作,多个卷积特征提取框架提取的特征融合或从输出层融合,全连接层聚合学习到的特征,激活函数使用Relu。
  • 通常,在模型训练过程中需要对超参数进行优化,为模型选择一组最优的超参数,以提高预测的性能和有效性。 凭经验设置超参数会使最终确定的模型超参数组合不一定是最优的,这会影响模型网络的拟合程度及其对测试数据的泛化能力。

8

  • 伪代码
    9

10

  • 通过调整优化算法调整模型参数,学习重复率和贝叶斯优化超参数来调整模型参数。

程序设计

  • 完整程序和数据下载方式(资源处直接下载):MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测
%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%%  贝叶斯优化参数范围
optimVars = [optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];%%  贝叶斯优化网络参数
bayesopt(fitness, optimVars, ...    % 优化函数,和参数范围'MaxTime', Inf, ...                      % 优化时间(不限制) 'IsObjectiveDeterministic', false, ...'MaxObjectiveEvaluations', 10, ...       % 最大迭代次数'Verbose', 1, ...                        % 显示优化过程'UseParallel', false);%%  得到最优参数
NumOfUnits       = BayesObject.XAtMinEstimatedObjective.NumOfUnits;       % 最佳隐藏层节点数
InitialLearnRate = BayesObject.XAtMinEstimatedObjective.InitialLearnRate; % 最佳初始学习率
L2Regularization = BayesObject.XAtMinEstimatedObjective.L2Regularization; % 最佳L2正则化系数
%% 创建混合CNN-LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"CNN-LSTM"模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% CNN特征提取convolution2dLayer([FiltZise 1],32,'Padding','same','WeightsInitializer','he','Name','conv','DilationFactor',1);batchNormalizationLayer('Name','bn')eluLayer('Name','elu')averagePooling2dLayer(1,'Stride',FiltZise,'Name','pool1')% 展开层sequenceUnfoldingLayer('Name','unfold')% 平滑层flattenLayer('Name','flatten')% LSTM特征学习lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% LSTM输出lstmLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% CNNLSTM训练选项
% 批处理样本
% 最大迭代次数
%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测

BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测 目录 BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测效果一览基本介绍模型搭建程序设计参考资料 效果一览 …...

DataWind将字符串数组拆出多行的方法

摘要: 可视化建模中先将字符串split为array再用explode(array)即可 可视化建模 进入“可视化建模”页面 1.1 新建任务 如果团队内没有可视化建模任务。请点击“新建任务”,输入名称并确定。 1.2 建立数据连接 在左边栏中选择“数据连接”&#xff0c…...

try...catch 和then...catch的异同点分析

try…catch 和 then…catch 的异同点分析 在现代 JavaScript 编程中,异常处理和 Promise 的处理是非常常见的两种方式。try...catch 语句主要用于同步代码的异常处理,而 .then().catch() 是 Promise 中的异步处理方法。 1. 基础概念 1.1 try…catch …...

Mit6.S081-实验环境搭建

Mit6.S081-实验环境搭建 注:大家每次做一些操作的时候觉得不太保险就先把虚拟机克隆一份 前言 qemu(quick emulator):这是一个模拟硬件环境的软件,利用它可以运行我们编译好的操作系统。 准备一个Linux系统&#xf…...

以太网交换安全:MAC地址漂移

一、什么是MAC地址漂移? MAC地址漂移是指设备上一个VLAN内有两个端口学习到同一个MAC地址,后学习到的MAC地址表项覆盖原MAC地址表项的现象。 MAC地址漂移的定义与现象 基本定义:MAC地址漂移发生在一个VLAN内的两个不同端口学习到相同的MAC地…...

STM32实现串口接收不定长数据

原理 STM32实现串口接收不定长数据,主要靠的就是串口空闲(idle)中断,此中断的触发条件与接收的字节数无关,只有当Rx引脚无后续数据进入时(串口空闲时),认为这时候代表一个数据包接收完成了&…...

AAA 数据库事务隔离级别及死锁

目录 一、事务的四大特性(ACID) 1. 原子性(atomicity): 2. 一致性(consistency): 3. 隔离性(isolation): 4. 持久性(durability): 二、死锁的产生及解决方法 三、事务的四种隔离级别 0 .封锁协议 …...

外接数据库给streamlit等web APP带来的变化

之前我采用sreamlit制作了一个调查问卷的APP, 又使用MongoDB作为外部数据存储,隐约觉得外部数据库对于web APP具有多方面的意义,代表了web APP发展的趋势之一,似乎是作为对这种趋势的响应,streamlit官方近期开发了st.c…...

Gitpod: 我们正在离开 Kubernetes

原文:Christian Weichel - 2024.10.31 Kubernetes 似乎是构建远程、标准化和自动化开发环境的显而易见选择。我们也曾这样认为,并且花费了六年时间,致力于打造最受欢迎的云开发环境平台,并达到了互联网级的规模。我们的用户数量达…...

1.每日SQL----2024/11/7

题目: 计算用户次日留存率,即用户第二天继续登录的概率 表: iddevice_iddate121382024-05-03232142024-05-09332142024-06-15465432024-08-13523152024-08-13623152024-08-14723152024-08-15832142024-05-09932142024-08-151065432024-08-131123152024-…...

普通一本大二学生,软件工程,想考研985,想知道哪个大学的软件工程好,又不至于完全考不起的?

竞争难度适中:相较于顶尖985院校,重庆大学作为实力派985高校,其竞争烈度较为温和,考研难度适中偏易,为追求高性价比深造路径的考生提供了理想之选。 考试难度友好:重庆地区考研评分标准相对宽松&#xff0…...

「QT」几何数据类 之 QMatrix4x4 4x4矩阵类

✨博客主页何曾参静谧的博客📌文章专栏「QT」QT5程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasolid…...

让Apache正确处理不同编码的文件避免中文乱码

安装了apache2.4.39以后&#xff0c;默认编码是UTF-8&#xff0c;不管你文件是什么编码&#xff0c;统统按这个来解析&#xff0c;因此 GB2312编码文件内的中文将显示为乱码。 <!doctype html> <html> <head><meta http-equiv"Content-Type" c…...

人员密集场所遇到突发火灾事故该如何应对

0引言 在繁华喧嚣的都市中&#xff0c;人员密集场所如购物中心、电影院、办公楼等&#xff0c;是人们日常生活不可或缺的一部分。然而&#xff0c;在这些看似繁华的背后&#xff0c;隐藏着不可忽视的安全隐患——火灾。火灾无情&#xff0c;往往在不经意间爆发&#xff0c;瞬间…...

使用QtWebEngine的Mac应用如何发布App Store

前言 因为QtWebEngine时第三方包,苹果并不直接支持进行App Store上签名和发布,所以构建和发布一个基于使用QtWebEngine的应用程序并不容易,这里我们对Qt 5.8稍微做一些修改,以便让我们的基于QtWeb引擎的应用程序并让签名能够得到苹果的许可。 QtWebEngine提供了C++和Qml的…...

微机原理与接口技术——中断系统与可编中断控制芯片8259A

目录 一、8259A 芯片介绍 二、8259A 的内部结构和引脚 三、8259A 的中断工作过程 四、8259A 的工作方式 五、8259A 的编程 六、外部中断服务程序 一、8259A 芯片介绍 Intel 8259A 是可编程中断控制器&#xff0c;可用于管理 Intel 8080/8085、8086/8088、80286/80386 的…...

【JavaEE初阶 — 多线程】Thread类的方法&线程生命周期

目录 1. start() (1) start() 的性质 (2) start() 和 Thread类 的关系 2. 终止一个线程 (1)通过共享的标记结束线程 1. 通过共享的标记结束线程 2. 关于 lamda 表达式的“变量捕获” (2) 调用interrupt()方法 1. isInterrupted() 2. currentThread() …...

面试题分享11月7日

1、ThreadLocal 是什么 是 Java 中线程的本地方法变量&#xff0c;用来存储每个线程的私有数据&#xff0c;每个线程都有它的独立副本&#xff0c;相互隔离&#xff0c;互不影响 2、ThreadLocal 实现原理 每个 ThreadLocal 都有一个 ThreadLocalMap 对象&#xff0c;用来存储…...

数据结构_哈夫曼树及其应用

构造算法的例子 构造算法的实现 初始化&#xff0c;置权值 int i, m, s1, s2;m 2 * n - 1;for (i 1; i < m; i){HT[i].lch 0;HT[i].rch 0;HT[i].parent 0;}for (i 1; i < n; i){cin >> HT[i].weight;}合并结点 // 创建哈夫曼树for (i n 1; i < m; i){s1…...

从0开始学习机器学习--Day19--学习曲线

一般来说&#xff0c;如果一个算法的表现不理想&#xff0c;那么多半是因为出现了欠拟合或过拟合问题&#xff0c;这种时候我们要做的就是搞清楚出现的是偏差问题还是方差问题&#xff0c;亦或是二者皆有&#xff0c;这有助于我们精准定位问题所在。 之前&#xff0c;我们发现…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API&#xff0c;让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API&#xff0c;你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...