如何设置 TORCH_CUDA_ARCH_LIST 环境变量以优化 PyTorch 性能
引言
在深度学习领域,PyTorch 是一个广泛使用的框架,它允许开发者高效地构建和训练模型。为了充分利用你的 GPU 硬件,正确设置 TORCH_CUDA_ARCH_LIST
环境变量至关重要。这个变量告诉 PyTorch 在构建过程中应该针对哪些 CUDA 架构版本进行优化。本文将指导你如何确定你的 GPU 的 CUDA 架构能力,并设置相应的环境变量。
确定你的 GPU 的 CUDA 架构能力
首先,你需要知道你的 GPU 支持的 CUDA 计算能力。你可以通过运行以下 Python 代码来获取这个信息:
import torch; print(torch.cuda.get_device_capability())
或者,如果你更喜欢使用命令行,可以执行:
python -c "import torch; print(torch.cuda.get_device_capability())"
这将返回一个元组,包含两个整数,分别代表你的 GPU 支持的 CUDA 架构的主版本号和次版本号。例如,如果输出是 (8, 9)
,则表示你的 GPU 支持 CUDA 架构 8.9。
设置 TORCH_CUDA_ARCH_LIST 环境变量
一旦你知道了你的 GPU 的 CUDA 架构能力,你就可以设置 TORCH_CUDA_ARCH_LIST
环境变量,以便 PyTorch 可以针对这些架构进行优化。这个列表告诉 PyTorch 你的 GPU 支持的 CUDA 版本,以便正确编译和优化 PyTorch 代码。
在 Linux 或 macOS 上设置环境变量
在终端中,你可以使用 export
命令来设置环境变量:
export TORCH_CUDA_ARCH_LIST="8.9"
在 Windows 上设置环境变量
在命令提示符(CMD)中,你可以使用 set
命令:cmd
set TORCH_CUDA_ARCH_LIST=8.9
在 PowerShell 中,你可以使用:
$env:TORCH_CUDA_ARCH_LIST="8.9"
构建优化的 PyTorch 版本
设置好环境变量后,你就可以开始构建针对特定 CUDA 架构优化的 PyTorch 版本了。这对于确保你的深度学习模型能够充分利用 GPU 的性能至关重要。
结论
正确设置 TORCH_CUDA_ARCH_LIST
环境变量可以显著提高你的 PyTorch 应用的性能。通过遵循上述步骤,你可以确保你的深度学习模型在 GPU 上运行得更快、更高效。如果你在设置过程中遇到任何问题,不要犹豫,查阅 PyTorch 官方文档或寻求社区的帮助。
相关文章:

如何设置 TORCH_CUDA_ARCH_LIST 环境变量以优化 PyTorch 性能
引言 在深度学习领域,PyTorch 是一个广泛使用的框架,它允许开发者高效地构建和训练模型。为了充分利用你的 GPU 硬件,正确设置 TORCH_CUDA_ARCH_LIST 环境变量至关重要。这个变量告诉 PyTorch 在构建过程中应该针对哪些 CUDA 架构版本进行优…...

CSS的三个重点
目录 1.盒模型 (Box Model)2.位置 (position)3.布局 (Layout)4.低代码中的这些概念 在学习CSS时,有三个概念需要重点理解,分别是盒模型、定位、布局 1.盒模型 (Box Model) 定义: CSS 盒模型是指每个 HTML 元素在页面上被视为一个矩形盒子。…...
【笔记】前后端互通中前端登录无响应
后来的前情提要 : 后端的ip地址在本地测试阶段应该设置为localhost 前端中写cors的配置 后端也要写cors的配置 且两者的url都要为localhost 前端写的baseUrl是指定对应的后端的ip地址以及端口号 很重要 在本地时后端的IP的地址也必须为本地的 F12的网页报错是&a…...
AI引领PPT创作:迈向“免费”时代的新篇章?
AI引领PPT创作:迈向“免费”时代的新篇章? 在信息爆炸的时代,演示文稿(PPT)作为传递信息和展示观点的重要工具,其制作效率和质量直接关系到演讲者的信息传递效果。随着人工智能(AI)…...

HTB:Perfection[WriteUP]
目录 连接至HTB服务器并启动靶机 1.What version of OpenSSH is running? 使用nmap对靶机TCP端口进行开放扫描 2.What programming language is the web application written in? 使用浏览器访问靶机80端口页面,并通过Wappalyzer查看页面脚本语言 3.Which e…...

鸿蒙next打包流程
目录 下载团结引擎 添加开源鸿蒙打包支持 打包报错 路径问题 安装DevEcoStudio 可以在DevEcoStudio进行打包hap和app 包结构 没法直接用previewer运行 真机运行和测试需要配置签名,DevEcoStudio可以自动配置, 模拟器安装hap提示报错 安装成功,但无法打开 团结1.3版本新增工具…...

uni-app 实现自定义底部导航
原博:https://juejin.cn/post/7365533404790341651 在开发微信小程序,通常会使用uniapp自带的tabBar实现底部图标和导航,但现实有少量应用使用uniapp自带的tabBar无法满足需求,这时需要自定义底部tabBar功能。 例如下图的需求&am…...

Vue前端开发:animate.css第三方动画库
在实际的项目开发中,如果自定义元素的动画,不仅效率低下,代码量大,而且还存在浏览器的兼容性问题,因此,可以借助一些优秀的第三动画库来协助完成动画的效果,如animate.css和gsap动画库ÿ…...
Java中的I/O模型——BIO、NIO、AIO
1. BIO(Blocking I/O) 1. 1 BIO(Blocking I/O)模型概述 BIO,即“阻塞I/O”(Blocking I/O),是一种同步阻塞的I/O模式。它的主要特点是,当程序发起I/O请求(比如…...
【软考知识】敏捷开发与统一建模过程(RUP)
敏捷开发模式 概述敏捷开发的主要特点包括:敏捷开发的常见实践包括:敏捷开发的优势:敏捷开发的挑战:敏捷开发的方法论: ScrumScrum 的核心概念Scrum 的执行过程Scrum 的适用场景 极限编程(XP)核…...

Redis常见面试题(二)
Redis性能优化 Redis性能测试 阿里Redis性能优化 使用批量操作减少网络传输 Redis命令执行步骤:1、发送命令;2、命令排队;3、命令执行;4、返回结果。其中 1 与 4 消耗时间 --> Round Trip Time(RTT,…...

业务模块部署
一、部署前端 1.1 window部署 下载业务模块前端包。 (此包为耐威迪公司发布,请联系耐威迪客服或售后获得) 包名为:业务-xxxx-business (注:xxxx为发布版本号) 此文件部署位置为:……...

【LeetCode】【算法】48. 旋转图像
LeetCode 48. 旋转图像 题目描述 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 思路 思路:再次拜见K神…...

【STM32F1】——9轴姿态模块JY901与串口通信(上)
【STM32F1】——9轴姿态模块JY901与串口通信(上) 一、简介 本篇主要对调试JY901模块的过程进行总结,实现了以下功能。 串口普通收发:使用STM32F103C8T6的USART2实现9轴姿态模块JY901串口数据的读取,并利用USART1发送到串口助手。 串口DMA收发:使用STM32F103C8T6的USART…...

Docker网络概述
1. Docker 网络概述 1.1 网络组件 Docker网络的核心组件包括网络驱动程序、网络、容器以及IP地址管理(IPAM)。这些组件共同工作,为容器提供网络连接和通信能力。 网络驱动程序:Docker支持多种网络驱动程序,每种驱动程…...
Vite与Vue Cli的区别与详解
它们的功能非常相似,都是提供基本项目脚手架和开发服务器的构建工具。 主要区别 Vite在开发环境下基于浏览器原生ES6 Modules提供功能支持,在生产环境下基于Rollup打包; Vue Cli不区分环境,都是基于Webpack。 在生产环境下&…...

深究JS底层原理
一、JS中八种数据类型判断方法 在JavaScript中,数据类型分为两大类:基本(原始)数据类型和引用(对象)数据类型。 基本数据类型(Primitive Data Types) 基本数据类型是表示简单的数…...
数据分析-41-时间序列预测之机器学习方法XGBoost
文章目录 1 时间序列1.1 时间序列特点1.1.1 原始信号1.1.2 趋势1.1.3 季节性和周期性1.1.4 噪声1.2 时间序列预测方法1.2.1 统计方法1.2.2 机器学习方法1.2.3 深度学习方法2 XGBoost2.1 模拟数据2.2 生成滞后特征2.3 切分训练集和测试集2.4 封装专用格式2.5 模型训练和预测3 参…...
json转java对象 1.文件读取为String 2.String转为JSONObject 3.JSONObject转为Class
一.参考王广帅的 服务器起服时的加载 private void readConfigFile(String configDir, Class<?> clazz) throws Exception {String fileName getConfigFileName(clazz);File configFile new File(configDir, fileName);// 读取所有的行,因此,应…...

基于卷积神经网络的农作物病虫害识别系统(pytorch框架,python源码)
更多图像分类、图像识别、目标检测等项目可从主页查看 功能演示: 基于卷积神经网络的农作物病虫害检测(pytorch框架)_哔哩哔哩_bilibili (一)简介 基于卷积神经网络的农作物病虫害识别系统是在pytorch框架下实现的…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...