当前位置: 首页 > news >正文

【智能算法应用】淘金优化算法求解二维路径规划问题

摘要

本文基于智能算法的淘金优化算法(Gold Panning Optimization, GPO)求解二维路径规划问题。该算法模拟淘金过程中个体寻找最优金矿路径的行为,利用适应度函数优化路径规划,能够在复杂环境下实现从起点到目标点的最优路径搜索。通过实验验证,淘金优化算法在路径规划中的收敛速度和路径质量上表现出色,为高效路径规划提供了新的思路。

理论

淘金优化算法是近年来提出的一种启发式算法,模拟了淘金者在随机环境中寻找最佳金矿位置的过程。算法核心包括以下几个步骤:

1. 初始化种群:设定初始位置及参数。

2. 适应度评估:根据当前路径与障碍物的距离及路径长度计算适应度。

3. 局部搜索与全局搜索:结合局部搜索优化当前路径,全局搜索确保跳出局部最优。

4. 更新策略:根据适应度值更新淘金者的位置。

5. 收敛判定:若达到最大迭代次数或适应度值达到预期目标,则停止搜索。

路径规划问题通过构建二维平面,设定起点、终点及障碍物,利用淘金优化算法寻求避开障碍物的最短路径。

实验结果

通过在二维平面内设置多个随机障碍物进行实验,利用淘金优化算法实现了起点与目标点之间的最优路径规划。以下为实验结果分析:

1. 路径规划结果

第一张图展示了算法找到的最优路径(黑色曲线),成功避开了障碍物,实现从起点(黄色方块)到目标点(绿色五角星)的路径规划。

2. 收敛曲线

第二张图展示了适应度随迭代次数的变化过程,可以看到算法在前50次迭代后适应度迅速下降,逐步收敛到最优值,显示出较高的收敛效率。

部分代码

% 淘金优化算法求解二维路径规划
clear; clc;% 初始化参数
max_iter = 500;  % 最大迭代次数
pop_size = 30;   % 种群规模
start_pos = [0, 0]; % 起点
goal_pos = [6, 6];  % 目标点
obstacles = [2, 4; 3, 3; 4, 2; 5, 5; 1, 5]; % 障碍物坐标% 障碍物半径
radius = 0.5;% 初始化种群
population = rand(pop_size, 2) * 6;  % 随机生成种群for iter = 1:max_iterfitness = zeros(pop_size, 1);% 计算适应度for i = 1:pop_sizepath = [start_pos; population(i, :); goal_pos];fitness(i) = calculate_fitness(path, obstacles, radius);end% 选择适应度最优个体[best_fitness, best_idx] = min(fitness);best_path = [start_pos; population(best_idx, :); goal_pos];% 更新种群位置population = update_population(population, best_path);% 记录收敛曲线convergence(iter) = best_fitness;
end% 绘制结果
plot_results(obstacles, radius, best_path, convergence);function fit = calculate_fitness(path, obstacles, radius)% 计算路径适应度fit = sum(sqrt(sum(diff(path).^2, 2)));  % 路径长度for obs = obstacles'dist = sqrt(sum((path - obs').^2, 2));fit = fit + sum(dist < radius) * 100;  % 惩罚因子end
endfunction pop = update_population(pop, best_path)% 更新种群位置pop = pop + randn(size(pop)) * 0.1 .* (best_path(2, :) - pop);
endfunction plot_results(obstacles, radius, path, convergence)% 绘制路径和收敛曲线figure;hold on;for obs = obstacles'viscircles(obs', radius, 'Color', 'b');endplot(path(:, 1), path(:, 2), 'k-', 'LineWidth', 2);scatter(path(1, 1), path(1, 2), 100, 'y', 's', 'filled');scatter(path(end, 1), path(end, 2), 100, 'g', '*');hold off;figure;plot(convergence);xlabel('迭代次数');ylabel('适应度');
end

参考文献

  1. Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, 4, 1942-1948.

  2. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.

  3. Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press.

  4. Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.

  5. Li, X., & Zhang, X. (2022). Gold Panning Optimization Algorithm for Path Planning. International Journal of Automation and Computing, 19(4), 495-509.

(文章内容仅供参考,具体效果以图片为准)

相关文章:

【智能算法应用】淘金优化算法求解二维路径规划问题

摘要 本文基于智能算法的淘金优化算法&#xff08;Gold Panning Optimization, GPO&#xff09;求解二维路径规划问题。该算法模拟淘金过程中个体寻找最优金矿路径的行为&#xff0c;利用适应度函数优化路径规划&#xff0c;能够在复杂环境下实现从起点到目标点的最优路径搜索…...

Linux挖矿病毒(kswapd0进程使cpu爆满)

一、摘要 事情起因:有台测试服务器很久没用了&#xff0c;突然监控到CPU飙到了95以上&#xff0c;并且阿里云服务器厂商还发送了通知消息&#xff0c;【阿里云】尊敬的xxh: 经检测您的阿里云服务&#xff08;ECS实例&#xff09;i-xxx存在挖矿活动。因此很明确服务器中挖矿病毒…...

【java】ArrayList与LinkedList的区别

目录 1. 说明2. 内部实现2.1 ArrayList2.2 LinkedList 3. 性能特点3.1 插入和删除操作3.2 访问操作3.1 遍历操作 4. 使用场景5. 扩容机制6. 空间开销 1. 说明 1.Java中的ArrayList和LinkedList是两种常用的集合实现类&#xff0c;都属于Java集合框架的一部分&#xff0c;但它们…...

【LangChain系列6】【Agent模块详解】

目录 前言一、LangChain1-1、介绍1-2、LangChain抽象出来的核心模块1-3、特点1-4、langchain解决的一些行业痛点1-5、安装 二、Agent模块详解2-0、Agent核心思想——React介绍2-0-1、React的介绍以及由来2-0-2、伪代码介绍React的执行顺序 2-1、Agent介绍2-1、Self ask with se…...

JavaScript Cookie 与 服务器生成的 Cookie 的区别与应用

JavaScript Cookie 与 服务器生成的 Cookie 的区别与应用 Cookie是一种甜点&#xff0c;同时也是web前端开发中一种非常常见且重要的技术&#xff0c;它用于在客户端和服务器之间存储和传递信息。用户身份验证、会话管理&#xff0c;还是用户个性化设置&#xff0c;都离不开Coo…...

深入了解Git、GitHub、GitLab及其应用技巧

在现代软件开发中&#xff0c;掌握版本控制系统&#xff08;VCS&#xff09;是至关重要的&#xff0c;其中Git是最流行的分布式版本控制工具之一。本文将详细介绍Git的用途及其基本操作&#xff0c;并深入探讨GitLab、GitHub、和Git Desktop的使用方法&#xff0c;同时总结Git的…...

ctfshow(316,317,318)--XSS漏洞--反射性XSS

反射型XSS相关知识 Web316 进入界面&#xff1a; 审计 显示是关于反射性XSS的题目。 思路 首先想到利用XSS平台解题&#xff0c;看其他师傅的wp提示flag是在cookie中。 当前页面的cookie是flagyou%20are%20not%20admin%20no%20flag。 但是这里我使用XSS平台&#xff0c;…...

Visual Studio2022版本的下载与安装

1-首先打开微软的官网&#xff0c;下面就是链接 下载 Visual Studio Tools - 免费安装 Windows、Mac、Linux免费下载 Visual Studio IDE 或 VS Code。 在 Windows、Mac 上试用 Visual Studio Professional 或企业版。https://visualstudio.microsoft.com/zh-hans/downloads/?…...

nodeJS程序如何引入依赖包

在 Node.js 运行时中引入依赖包通常通过以下步骤完成&#xff1a; 初始化项目&#xff1a; 首先&#xff0c;你需要初始化一个 Node.js 项目。如果你还没有 package.json 文件&#xff0c;可以使用 npm init 命令来创建它。运行以下命令并按提示输入相关信息&#xff1a; npm i…...

建网站怎么建?只需几个步骤

在这个网络飞速发展的时代&#xff0c;越来越多的人都渴望拥有自己的网站。然而&#xff0c;对于大多数新手来说&#xff0c;如何建立自己的网站可能充满了挑战。本文将为您详细介绍建网站的关键步骤&#xff0c;让您能够轻松搭建自己的网站。 选择适合的建站工具 虽然市面上有…...

机器学习课程总结(个人向)

前言 通过看课件PPT整理的笔记&#xff0c;没有截图 由于大部分内容已经耳熟能详了&#xff0c;故记录比较简略&#xff0c;只记录了一些概念和需要记忆的地方。 里面有较多的个人观点&#xff0c;未必正确。如有错误&#xff0c;还请各位大佬指正 正文 绪论 机器学习的定…...

数据分析-43-时间序列预测之深度学习方法GRU

文章目录 1 时间序列1.1 时间序列特点1.1.1 原始信号1.1.2 趋势1.1.3 季节性和周期性1.1.4 噪声1.2 时间序列预测方法1.2.1 统计方法1.2.2 机器学习方法1.2.3 深度学习方法2 GRU2.1 模拟数据2.2 数据归一化2.3 生成滞后特征2.4 切分训练集和测试集2.5 模型训练2.6 模型预测3 参…...

Pandas | 数据分析时将特定列转换为数字类型 float64 或 int64的方法

类型转换 传统方法astype使用value_counts统计通过apply替换并使用astype转换 pd.to_numericx对连续变量进行转化⭐参数&#xff1a;返回值&#xff1a;示例代码&#xff1a; isnull不会检查空字符串 数据准备 有一组数据信息如下&#xff0c;其中主要将TotalCharges、MonthlyC…...

Elasticsearch的自定义查询方法到底是啥?

Elasticsearch主要的目的就是查询&#xff0c;默认提供的查询方法是查询全部&#xff0c;不满足我们的需求&#xff0c;可以定义查询方法 自定义查询方法 单条件查询 我们查询的需求&#xff1a;从title中查询所有包含"鼠标"这个分词的商品数据 SELECT * FROM it…...

Jenkins找不到maven构建项目

有的可能没有出现maven这个选项 解决办法&#xff1a;需要安装Maven项目插件 输入​Maven Integration plugin​...

怎么更换IP地址 改变IP归属地的三种方法

要更换自己的IP地址&#xff0c;您可以按照以下步骤进行操作&#xff1a; 1. 了解IP地址类型&#xff1a;首先&#xff0c;您需要了解您当前使用的IP地址类型。IP地址分为静态IP和动态IP两种。静态IP地址是固定的&#xff0c;使用第三方软件比如S深度IP转换器&#xff1b;而使用…...

C#-异步查询示例

文章速览 CancellationTokenSource 概述代码示例 坚持记录实属不易&#xff0c;希望友善多金的码友能够随手点一个赞。 共同创建氛围更加良好的开发者社区&#xff01; 谢谢~ CancellationTokenSource 概述 使用System.Threading下的CancellationTokenSource类&#xff0c;进…...

设计模式之适配器模式(从多个MQ消息体中,抽取指定字段值场景)

前言 工作到3年左右很大一部分程序员都想提升自己的技术栈&#xff0c;开始尝试去阅读一些源码&#xff0c;例如Spring、Mybaits、Dubbo等&#xff0c;但读着读着发现越来越难懂&#xff0c;一会从这过来一会跑到那去。甚至怀疑自己技术太差&#xff0c;慢慢也就不愿意再触碰这…...

vue+exceljs前端下载、导出xlsx文件

首先安装插件 npm install exceljs file-saver第一种 简单导出 //页面引入 import ExcelJS from exceljs; import {saveAs} from file-saver; export default {methods: { /** 导出操作 */async handleExportFun() {let that this// 获取当前年月日 用户下载xlsx的文件名称设…...

算法定制LiteAIServer摄像机实时接入分析平台烟火检测算法的主要功能

在现代社会&#xff0c;随着人工智能技术的飞速发展&#xff0c;智能监控系统在公共安全领域的应用日益广泛。其中&#xff0c;烟火检测作为预防火灾的重要手段&#xff0c;其准确性和实时性对于减少火灾损失、保障人民生命财产安全具有重要意义。而算法定制LiteAIServer烟火检…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...