当前位置: 首页 > news >正文

背包问题(三)

文章目录

    • 一、二维费用的背包问题
    • 二、潜水员
    • 三、机器分配
    • 四、开心的金明
    • 五、有依赖的背包问题

一、二维费用的背包问题

题目链接
在这里插入图片描述

#include<iostream>
#include<algorithm>
using namespace std;
const int M = 110;
int n,m,kg;
int f[M][M];int main()
{cin >> n >> m >> kg;for(int i = 0;i < n;i ++){int v,M,w;cin >> v >> M >> w;for(int j = m;j >= v;j --)for(int k = kg;k >= M;k --){f[j][k] = max(f[j][k], f[j - v][k - M] + w);}}cout << f[m][kg];return 0;
}

二、潜水员

题目链接
在这里插入图片描述
题解来源:小呆呆 ,

这个题相较于二维费用的背包问题,稍稍有一点改变,二维费用的背包模板是体积不超过V,重量不超过M,但是这个题是体积至少为V,重量至少为M。

对比两题的思路,二维费用的背包问题,求的是不能超过体积V,重量M的情况下,能拿到价值的最大值。而本题是至少需要体积V,重量M的情况下,能拿到价值的最小值。就拿体积来说,至少需要多少体积,也就是说有体积比需要的体积大的物品还是能用得到,例如f[3][5],至少需要3个体积,5个重量,求能拿到价值的最小值,现在只有一个物品,体积是4,重量是4,价值w,它说至少需要3个体积,那么体积是4还是可以用到,只是多了1个体积没用占着而已,不影响其价值。因此若用了这个物品,则变成了求f[0][1] + w,表示体积已经不再需求了,只需要0个体积即可

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;int n,m,k;
const int M = 25, N = 82;
int f[M][N];
const int INF = 0x3f3f3f3f;int main()
{cin >> m >> n;cin >> k;memset(f, 0x3f, sizeof f);f[0][0] = 0;for(int i = 1;i <= k;i ++){int a,b,c;cin >> a >> b >> c;for(int j = m;j >= 0;j --)for(int x = n;x >= 0;x --){f[j][x] = min(f[j][x], f[max(0,j - a)][max(0, x - b)] + c);}}cout << f[m][n];return 0;
}

三、机器分配

题目链接
在这里插入图片描述
在这里插入图片描述

#include<iostream>
#include<algorithm>
using namespace std;int n,m;
const int N = 12, M = 18;
int f[N][M];
int ne[M];
int w[N][M];
int way[M];int main()
{cin >> n >> m;for(int i = 1;i <= n;i ++)for(int j = 1;j <= m;j ++)cin >> w[i][j];for(int i = 1;i <= n;i ++){for(int j = 0;j <= m;j ++){for(int k = m;k >= j;k --)f[i][k] = max(f[i][k], f[i - 1][k - j] + w[i][j]);}}cout << f[n][m] << endl;int j = m;for(int i = n;i >= 1;i --)for(int k = 0;k <= m;k ++)if(f[i][j] == f[i - 1][j - k] + w[i][k]){way[i] = k;j -= k;break;}for(int i = 1;i <= n;i ++) cout << i << " " << way[i] << endl;return 0;
}

四、开心的金明

在这里插入图片描述

这个题很容易,就是一个01背包问题

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 30100;
int n,m;
int f[N];int main()
{cin >> n >> m;for(int i = 1;i <= m;i ++){int v,w;cin >> v >> w;for(int j = n;j >= v;j --)f[j] = max(f[j], f[j - v] + v * w);}cout << f[n];return 0;
}

五、有依赖的背包问题

题目链接
在这里插入图片描述
在这里插入图片描述

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 110;
int head[N],e[N],ne[N],idx;
int n,m;
int v[N],w[N],p;
bool st[N];
int f[N][N];void add(int a,int b)
{e[idx] = b, ne[idx] = head[a], head[a] = idx ++;
}void dfs(int u)
{for(int i = head[u]; ~i;i = ne[i]){int son = e[i];dfs(e[i]);for(int j = m - v[u];j >= 0;j --){for(int k = 0;k <= j;k ++)f[u][j] = max(f[u][j], f[u][j - k] + f[son][k]);}}for(int i = m;i >= v[u];i --) f[u][i] = f[u][i - v[u]] + w[u];for(int i = 0;i < v[u];i ++) f[u][i] = 0;
}int main()
{cin >> n >> m;memset(head, -1,sizeof head);int root;for(int i = 1;i <= n;i ++){cin >> v[i] >> w[i] >> p;if(p == -1) {   root = i;continue;}add(p, i);st[i] = true;}dfs(root);cout << f[root][m];return 0;
}

相关文章:

背包问题(三)

文章目录 一、二维费用的背包问题二、潜水员三、机器分配四、开心的金明五、有依赖的背包问题 一、二维费用的背包问题 题目链接 #include<iostream> #include<algorithm> using namespace std; const int M 110; int n,m,kg; int f[M][M];int main() {cin >…...

linux之调度管理(2)-调度器 如何触发运行

一、调度器是如何在程序稳定运行的情况下进行进程调度的 1.1 系统定时器 因为我们主要讲解的是调度器&#xff0c;而会涉及到一些系统定时器的知识&#xff0c;这里我们简单讲解一下内核中定时器是如何组织&#xff0c;又是如何通过通过定时器实现了调度器的间隔调度。首先我们…...

深入理解 Vue 3 中的 Props

深入理解 Vue 3 中的 Props Vue 3 引入了 Composition API 等新特性&#xff0c;组件的定义和使用也变得更为灵活。而在组件通信中&#xff0c;Props&#xff08;属性&#xff09;扮演了重要角色&#xff0c;帮助父组件向子组件传递数据&#xff0c;形成单向的数据流动&#x…...

校园周边美食探索及分享平台

摘要&#xff1a; 美食一直是与人们日常生活息息相关的产业。传统的电话订餐或者到店消费已经不能适应市场发展的需求。随着网络的迅速崛起&#xff0c;互联网日益成为提供信息的最佳俱渠道和逐步走向传统的流通领域&#xff0c;传统的美食业进而也面临着巨大的挑战&#xff0…...

内网对抗-信息收集篇SPN扫描DC定位角色区域定性服务探针安全防护凭据获取

知识点&#xff1a; 1、信息收集篇-网络架构-出网&角色&服务&成员 2、信息收集篇-安全防护-杀毒&防火墙&流量监控 3、信息收集篇-密码凭据-系统&工具&网站&网络域渗透的信息收集&#xff1a; 在攻防演练中&#xff0c;当完成边界突破后进入内…...

石墨舟氮气柜:半导体制造中的关键保护设备

石墨舟是由高纯度石墨材料制成的&#xff0c;主要用于承载硅片或其他基板材料通过高温处理过程&#xff0c;是制造半导体器件和太阳能电池片的关键设备之一。 石墨舟在空气中容易与氧气发生反应&#xff0c;尤其是在高温处理后&#xff0c;表面可能更为敏感&#xff1b;石墨舟具…...

性能调优专题(7)之Innodb底层原理与Mysql日志机制深入剖析

一、MYSQL的内部组件结构 大体来说,Mysql可以分为Server层和存储引擎层两部分。 1.1 Server层 Server层主要包括连接器、查询缓存、词法分析器、优化器等。涵盖MYSQL的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功…...

量子计算及其在密码学中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 量子计算及其在密码学中的应用 量子计算及其在密码学中的应用 量子计算及其在密码学中的应用 引言 量子计算概述 定义与原理 发展…...

LSM树 (Log-Structured Merge Tree)、Cuckoo Hashing详细解读

一、LSM 树 (Log-Structured Merge Tree) LSM 树&#xff08;Log-Structured Merge Tree&#xff09; 是一种专为 高效写入和批量更新 设计的数据结构&#xff0c;特别适合于 高写入密度 的应用场景&#xff0c;如数据库和文件系统。它广泛用于 NoSQL 数据库&#xff08;如 Ca…...

VMware中的重要日志文件 vobd.log 学习总结

最近几天处理完毕存储的故障后&#xff0c;接着就是host方面的问题&#xff0c;Vmware无法访问到存储&#xff0c;其实存储的LUN和POOL 已经online ready了&#xff0c;但是主机还是访问不到存储。 这里介绍下Vmware中的一个重要的日志文件 vobd.log&#xff0c;该文件对于分析…...

MyBatis 返回 Map 或 List<Map>时,时间类型数据,默认为LocalDateTime,响应给前端默认含有‘T‘字符

一、问题 MyBatis 返回 Map 或 List时&#xff0c;时间类型数据&#xff0c;默认为LocalDateTime Springboot 响应给前端的LocalDateTime&#xff0c;默认含有’T’字符&#xff0c;如何统一配置去掉 二、解决方案 1、pom.xml 增加依赖&#xff08;2024.11.6 补充&#xff…...

ASR TP

ASR翱捷科技 ASR kernel 5.10 android14 ASR EVB平台 jd9365tr(jadard) spi 1.驱动: 跟mtk驱动一样,放进去,不用改 asr_android14.0_alpha\asr\kernel\linux\drivers\input\touchscreen\jadard makefile: asr_android14.0_alpha\asr\kernel\linux\drivers\input\t…...

Tomcat与Nginx之全面比较

概况 Apache Tomcat Apache Tomcat&#xff0c;通常简称为Tomcat&#xff0c;是一个开源的Web应用服务器&#xff0c;它主要用于运行Java Web应用程序。Tomcat实现了Java Servlet和JavaServer Pages&#xff08;JSP&#xff09;技术&#xff0c;这些是Java EE规范的一部分。To…...

这是一个bug求助帖子--安装kali 遇坑

第一个报错 介质&#xff1a;kali-linux-2024.1-live-amd64 环境&#xff1a;Dell笔记本 i510代cpu 现象及操作 安装完以后 然后我换了个国内的源进行了以下操作 apt-get update&#xff1a;更新源列表 apt-get upgrade&#xff1a;更新所有可以更新的软件包 然后进行清理。…...

IntelliJ Idea设置自定义快捷键

我IDEA的快捷键是自己修改成了和Eclipse相似&#xff0c;然后想要跳转到某个方法的上层抽象方法没有对应的快捷键&#xff0c;IDEA默认的是Ctrl U &#xff08;Windows/Linux 系统&#xff09; 或 Command U &#xff08;Mac 系统&#xff09;&#xff0c;但是我的不起作用&a…...

AlohaKit:一组.NET MAUI绘制的开源控件

前言 今天大姚给大家分享一组.NET MAUI绘制的开源、免费&#xff08;MIT License&#xff09;UI控件库&#xff1a;AlohaKit。 MAUI介绍 .NET MAUI是一个开源、免费&#xff08;MIT License&#xff09;的跨平台框架&#xff08;支持Android、iOS、macOS 和 Windows多平台运…...

Windows 实例磁盘空间管理

操作场景 本文以操作系统为 Windows Server 2012 R2 的腾讯云云服务器为例&#xff0c;介绍如何在 Windows 实例磁盘空间不足的情况下进行空间释放操作&#xff0c;及如何进行磁盘的日常维护。 操作步骤 释放磁盘空间 您可通过 删除容量较大文件 或 删除不需要的文件 &…...

【动手学电机驱动】STM32-FOC(6)基于 IHM03 的无感方波控制

STM32-FOC&#xff08;1&#xff09;STM32 电机控制的软件开发环境 STM32-FOC&#xff08;2&#xff09;STM32 导入和创建项目 STM32-FOC&#xff08;3&#xff09;STM32 三路互补 PWM 输出 STM32-FOC&#xff08;4&#xff09;IHM03 电机控制套件介绍 STM32-FOC&#xff08;5&…...

【数据结构】汇编语言和机器语言的‘数据结构‘

前言 汇编语言没有像高级语言&#xff08;如 C#、Java 等&#xff09;那样直接提供数据结构&#xff08;如数组、链表、树、栈等&#xff09;&#xff0c;但是可以通过对内存地址和寄存器的操作来实现这些数据结构。汇编语言的核心是直接操控计算机的内存&#xff0c;因此所有…...

hadoop+spark中8088,18080,19888,4040端口页面的区别

在hadoop集群中&#xff0c;本身就有 9870端口&#xff0c;8088端口&#xff0c;19888端口 这三个页面&#xff0c;当使用spark作为计算引擎时&#xff0c;会多出8080&#xff0c;4040&#xff0c;18080这三个页面&#xff0c;页面就很多了&#xff0c;现在明确的辨别一下。 单…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...