当前位置: 首页 > news >正文

LSM树 (Log-Structured Merge Tree)、Cuckoo Hashing详细解读

一、LSM 树 (Log-Structured Merge Tree)

LSM 树(Log-Structured Merge Tree) 是一种专为 高效写入和批量更新 设计的数据结构,特别适合于 高写入密度 的应用场景,如数据库和文件系统。它广泛用于 NoSQL 数据库(如 Cassandra、LevelDB、RocksDB)等系统中,支持高效的顺序写入和延迟写入的合并操作。

1. 基本原理

LSM 树通过将数据分为多个 分层存储(通常称为 Level),并且将数据按 批次写入 来减少随机写操作,以提升写入性能。其核心思想是将 写入操作转化为顺序写入,从而提高磁盘 I/O 性能。

  • MemTable(内存表)

    • 写入首先进入内存中的 MemTable(通常是一个平衡树,如 AVL 树或 SkipList)。
    • 当 MemTable 达到一定大小时,会被写入磁盘,形成 SSTable(Sorted String Table) 文件。
  • SSTable(有序字符串表)

    • SSTable 是 只读的有序文件,通常是不可变的(Immutable)。
    • 数据写入磁盘后,MemTable 会被清空以接受新的写入。
  • 合并(Merge)与压缩(Compaction)

    • 随着 SSTable 文件的增多,系统会定期执行 合并和压缩操作
    • 合并操作将多个较小的 SSTable 文件合并为一个较大的文件,以减少磁盘空间的浪费,并提升查询效率。
2. 操作流程
  • 插入(Insert)

    1. 新数据首先写入 MemTable。
    2. MemTable 写满后,将其刷入磁盘生成新的 SSTable 文件。
    3. 后台合并线程定期将多个 SSTable 文件合并为一个较大的 SSTable 文件。
  • 查询(Search)

    1. 查询操作首先在 MemTable 中查找。
    2. 如果 MemTable 中未命中,则查找缓存的 Bloom Filter,以决定是否查询 SSTable。
    3. 若 Bloom Filter 判断 SSTable 可能存在查询数据,则顺序读取 SSTable 文件。
  • 删除(Delete)

    • 删除操作通过写入 删除标记(Tombstone) 来实现,实际数据不会立即删除,而是等待压缩时清理。
3. 优缺点
优点缺点
支持高效的批量写入和顺序写入查询效率受限于 SSTable 的合并与压缩策略
适合写密集型工作负载删除和更新操作依赖后台合并
支持快速恢复(数据持久化在磁盘上)高并发查询时,可能导致多次磁盘 I/O
4. 应用场景
  • NoSQL 数据库:如 Cassandra、LevelDB、RocksDB。
  • 日志管理系统:存储和检索大规模的日志数据。
  • 缓存系统:高效存储和更新缓存数据。
  • 分布式存储系统:用于提高数据写入效率和持久化性能。

二、Cuckoo Hashing

Cuckoo Hashing(布谷鸟哈希) 是一种解决哈希表 冲突问题 的高效算法。它通过使用 两个或多个哈希函数重新安置(Kick-Out)策略,在保证 O(1) 时间复杂度的同时,极大地减少了哈希冲突的概率。该算法得名于布谷鸟在其他鸟巢中安放自己的蛋的行为,正如在哈希表中安放键值对时,如果冲突发生,则将现有的键“挤出”并重新安放。

1. 基本原理
  • 多哈希函数:使用两个(或更多)不同的哈希函数 h1(x)h2(x)
  • 双表结构:使用两个独立的哈希表,或将其合并为一个逻辑上的双槽位表。
  • 挤出策略:当插入一个键时,如果目标槽位已被占用,则将占用的键“挤出”,并重新插入到其另一个哈希位置。
2. 操作流程
  • 插入(Insert)

    1. 计算键的两个哈希值 h1(key)h2(key)
    2. 尝试将键插入 h1(key) 所在的槽位。
    3. 如果槽位已占用,则将原有的键“踢出”(Kick-Out),并尝试将被踢出的键插入其另一哈希位置 h2(key)
    4. 这个过程可能会递归进行,如果达到最大次数(通常是表的大小的常数倍),则触发 重新哈希(Rehashing)
  • 查询(Search)

    1. 查询键时,计算其两个哈希值。
    2. 检查 h1(key)h2(key) 两个位置是否存在目标键。
  • 删除(Delete)

    • 删除时只需检查并清除 h1(key)h2(key) 两个位置的键值。
3. 时间复杂度
操作平均情况复杂度最坏情况复杂度
插入 (Insert)O(1)O(1)(可摊销)
查询 (Search)O(1)O(1)
删除 (Delete)O(1)O(1
重新哈希 (Rehash)O(n)O(n)
4. 优缺点
优点缺点
保证 O(1) 的查询和插入性能需要额外空间来存储多个哈希表
哈希表装载因子可接近 1,空间利用率高插入时可能需要多次挤出操作
可有效避免链式哈希的链表冲突和线性探测当表接近满载时,重新哈希代价较高
5. 应用场景
  • 缓存系统:适用于需要高性能键值存储的场景,如高速缓存 (Cache)。
  • 网络路由:用于存储和查找路由表,提高路由查找效率。
  • 数据库系统:索引结构和快速查找数据块。
  • 分布式系统:负载均衡、哈希分片等。

三、LSM 树 vs Cuckoo Hashing 对比

特性LSM 树 (Log-Structured Merge Tree)Cuckoo Hashing
核心特点高效的批量写入、顺序写入优化使用多个哈希函数与重新安置策略
适用数据类型适合有序数据的持久化存储适合高效的键值对存储
写入性能批量写入性能优越,适合写密集型场景保证 O(1) 写入性能
查询性能查询性能较高,但依赖于合并和压缩操作查询性能为 O(1),但需要额外空间
应用场景数据库、日志管理系统、缓存缓存系统、网络路由、快速查找
存储结构MemTable + SSTable + 压缩机制双哈希表 + 挤出策略

总结

  • LSM 树 适合 高写入密度 的应用场景,特别是对数据持久化有要求的系统,如 NoSQL 数据库日志系统
  • Cuckoo Hashing 更适合需要 快速插入和查询 的场景,特别是在 内存受限 的环境下,如 高速缓存网络路由表

相关文章:

LSM树 (Log-Structured Merge Tree)、Cuckoo Hashing详细解读

一、LSM 树 (Log-Structured Merge Tree) LSM 树(Log-Structured Merge Tree) 是一种专为 高效写入和批量更新 设计的数据结构,特别适合于 高写入密度 的应用场景,如数据库和文件系统。它广泛用于 NoSQL 数据库(如 Ca…...

VMware中的重要日志文件 vobd.log 学习总结

最近几天处理完毕存储的故障后,接着就是host方面的问题,Vmware无法访问到存储,其实存储的LUN和POOL 已经online ready了,但是主机还是访问不到存储。 这里介绍下Vmware中的一个重要的日志文件 vobd.log,该文件对于分析…...

MyBatis 返回 Map 或 List<Map>时,时间类型数据,默认为LocalDateTime,响应给前端默认含有‘T‘字符

一、问题 MyBatis 返回 Map 或 List时,时间类型数据,默认为LocalDateTime Springboot 响应给前端的LocalDateTime,默认含有’T’字符,如何统一配置去掉 二、解决方案 1、pom.xml 增加依赖(2024.11.6 补充&#xff…...

ASR TP

ASR翱捷科技 ASR kernel 5.10 android14 ASR EVB平台 jd9365tr(jadard) spi 1.驱动: 跟mtk驱动一样,放进去,不用改 asr_android14.0_alpha\asr\kernel\linux\drivers\input\touchscreen\jadard makefile: asr_android14.0_alpha\asr\kernel\linux\drivers\input\t…...

Tomcat与Nginx之全面比较

概况 Apache Tomcat Apache Tomcat,通常简称为Tomcat,是一个开源的Web应用服务器,它主要用于运行Java Web应用程序。Tomcat实现了Java Servlet和JavaServer Pages(JSP)技术,这些是Java EE规范的一部分。To…...

这是一个bug求助帖子--安装kali 遇坑

第一个报错 介质:kali-linux-2024.1-live-amd64 环境:Dell笔记本 i510代cpu 现象及操作 安装完以后 然后我换了个国内的源进行了以下操作 apt-get update:更新源列表 apt-get upgrade:更新所有可以更新的软件包 然后进行清理。…...

IntelliJ Idea设置自定义快捷键

我IDEA的快捷键是自己修改成了和Eclipse相似,然后想要跳转到某个方法的上层抽象方法没有对应的快捷键,IDEA默认的是Ctrl U (Windows/Linux 系统) 或 Command U (Mac 系统),但是我的不起作用&a…...

AlohaKit:一组.NET MAUI绘制的开源控件

前言 今天大姚给大家分享一组.NET MAUI绘制的开源、免费(MIT License)UI控件库:AlohaKit。 MAUI介绍 .NET MAUI是一个开源、免费(MIT License)的跨平台框架(支持Android、iOS、macOS 和 Windows多平台运…...

Windows 实例磁盘空间管理

操作场景 本文以操作系统为 Windows Server 2012 R2 的腾讯云云服务器为例,介绍如何在 Windows 实例磁盘空间不足的情况下进行空间释放操作,及如何进行磁盘的日常维护。 操作步骤 释放磁盘空间 您可通过 删除容量较大文件 或 删除不需要的文件 &…...

【动手学电机驱动】STM32-FOC(6)基于 IHM03 的无感方波控制

STM32-FOC(1)STM32 电机控制的软件开发环境 STM32-FOC(2)STM32 导入和创建项目 STM32-FOC(3)STM32 三路互补 PWM 输出 STM32-FOC(4)IHM03 电机控制套件介绍 STM32-FOC(5&…...

【数据结构】汇编语言和机器语言的‘数据结构‘

前言 汇编语言没有像高级语言(如 C#、Java 等)那样直接提供数据结构(如数组、链表、树、栈等),但是可以通过对内存地址和寄存器的操作来实现这些数据结构。汇编语言的核心是直接操控计算机的内存,因此所有…...

hadoop+spark中8088,18080,19888,4040端口页面的区别

在hadoop集群中,本身就有 9870端口,8088端口,19888端口 这三个页面,当使用spark作为计算引擎时,会多出8080,4040,18080这三个页面,页面就很多了,现在明确的辨别一下。 单…...

PDS的主要部件

PDS(配电系统)的主要部件包括去耦电容器、电源调节器、PCB几何结构等。以下是这些主要部件的相关介绍: 去耦电容器:去耦电容器是PDS中不可或缺的组成部分,其主要功能是过滤掉电源线上的噪声和干扰,确保供电…...

(十三)JavaWeb后端开发——MySQL2

目录 1.DQL数据查询语言 1.1基本查询 1.2条件查询 where关键字 1.3分组查询 1.4排序查询 1.5分页查询 2.多表设计 3.多表查询——联查 4.多表查询——子查询​ 5.MySQL 事务 6.事务管理(事务进阶) 7.MySQL 索引 1.DQL数据查询语言 分为五大…...

MFC图形函数学习06——画椭圆弧线函数

绘制椭圆弧线函数是MFC基本绘图函数,这个函数需要的参数比较多,共四对坐标点。前两对坐标点确定椭圆的位置与大小,后两对坐标确定椭圆弧线的起点与终点。 一、绘制椭圆弧线函数 原型:BOOL Arc(int x1,int y1,int x2,int y2…...

缓存、注解、分页

一.缓存 作用:应用查询上,内存中的块区域。 缓存查询结果,减少与数据库的交互,从而提高运行效率。 1.SqlSession 缓存 1. 又称为一级缓存,mybatis自动开启。 2. 作用范围:同一…...

【数据结构与算法】第9课—数据结构之二叉树(链式结构)

文章目录 1. 二叉树的性质2. 链式结构二叉树3. 二叉树链式结构的4种遍历方式4. 二叉树节点个数5. 二叉树的叶子节点个数6. 二叉树第k层节点个数7. 二叉树的高度/深度8. 二叉树查找值为x的节点9. 二叉树的销毁10. 判断是否为完全二叉树11. 二叉树练习题11.1 单值二叉树11.2 相同…...

【CSS】居中样式

对于行内元素,使用 text-align: center。对于已知宽度的块级元素,使用 margin: 0 auto。对于需要灵活布局的元素,使用 Flexbox 或 Grid。 flex .parent {display: flex;justify-content: center; /* 水平居中 */align-items: center; /* 垂…...

Vite环境下uniapp Vue 3项目添加和使用环境变量的完整指南

一、引言 在uniapp项目中,合理配置环境变量对于提高开发效率和保障项目安全至关重要。Vite作为新一代的前端构建工具,为环境变量的管理提供了简洁而强大的支持。下面,我们将一步步学习如何在Vite环境下为uniapp Vue 3项目添加和使用环境变量…...

mysql-springboot netty-flink-kafka-spark(paimon)-minio

1、下载spark源码并编译 mkdir -p /home/bigdata && cd /home/bigdata wget https://archive.apache.org/dist/spark/spark-3.4.3/spark-3.4.3.tgz 解压文件 tar -zxf spark-3.4.3.tgz cd spark-3.4.3 wget https://raw.githubusercontent.com/apache/incubator-celeb…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

【位运算】消失的两个数字(hard)

消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节(如内存地址值没有用二进制) 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么:保存在堆中一块区域,同时在栈中有一块区域保存其在堆中的地址(也就是我们通常说的该变量指向谁&…...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决

问题: pgsql数据库通过备份数据库文件进行还原时,如果表中有自增序列,还原后可能会出现重复的序列,此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”,…...

Qwen系列之Qwen3解读:最强开源模型的细节拆解

文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...

CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?

在现代前端开发中,Utility-First (功能优先) CSS 框架已经成为主流。其中,Tailwind CSS 无疑是市场的领导者和标杆。然而,一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...