机器学习Housing数据集
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
设置Seaborn的美观风格
sns.set(style=“whitegrid”)
Step 1: 下载 Housing 数据集,并读入计算机
def load_housing_data():
housing = fetch_openml(name=“house_prices”, as_frame=True)
housing_df = housing.data
# 打印实际列名和列数,方便调试
print("数据集的列数:", housing_df.shape[1])
print("数据集的列名:", housing_df.columns)# 检查列数是否为 14,如果是则重命名列,否则跳过重命名步骤
if housing_df.shape[1] == 14:housing_df.columns = ["CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX","PTRATIO", "B", "LSTAT", "MEDV"]
else:print("数据列数不符,未进行重命名。请检查数据集。")return housing_df
读取数据
housing_df = load_housing_data()
print(“Housing 数据集的前 5 项数据:”)
print(housing_df.head())
Step 2: 定义特征
features = [
“CRIM”, “ZN”, “INDUS”, “CHAS”, “NOX”, “RM”, “AGE”, “DIS”, “RAD”, “TAX”,
“PTRATIO”, “B”, “LSTAT”, “MEDV”
]
print(f"\n定义的特征列为:{features}")
Step 3: 抽取五个特征:LSTAT、INDUS、NOX、RM、MEDV,绘制散点图矩阵
selected_features = [“LSTAT”, “INDUS”, “NOX”, “RM”, “MEDV”]
sns.pairplot(housing_df[selected_features], diag_kind=“kde”, markers=“o”)
plt.suptitle(“散点图矩阵(选取特征:LSTAT、INDUS、NOX、RM、MEDV)”, y=1.02)
plt.show()
Step 4: 选取其他五个特征绘制散点图矩阵
other_features = [“CRIM”, “AGE”, “DIS”, “RAD”, “TAX”]
sns.pairplot(housing_df[other_features], diag_kind=“kde”, markers=“o”)
plt.suptitle(“散点图矩阵(选取特征:CRIM、AGE、DIS、RAD、TAX)”, y=1.02)
plt.show()
Step 5: 计算相关系数矩阵,并绘制热力图
使用前面选定的五个特征加上自己选择的五个特征
all_selected_features = selected_features + other_features
correlation_matrix = housing_df[all_selected_features].corr()
绘制热力图
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, fmt=“.2f”, cmap=“coolwarm”, square=True, cbar_kws={‘shrink’: .8})
plt.title(“相关系数矩阵热力图”)
plt.show()
总结 Housing 数据集的变化情况
print(“\n总结:\n通过散点图矩阵和相关系数热力图,我们可以观察到不同特征之间的关系。例如:”)
print(“- 房间数量(RM)与房价中位数(MEDV)呈正相关关系,房间数量越多,房价越高。”)
print(“- 人均犯罪率(CRIM)与地位较低人口比例(LSTAT)呈正相关关系,可能表明犯罪率与经济状况存在关联。”)
print(“- NOX和DIS的负相关性较强,可能表示距离市中心越远的地区空气污染物浓度越低。”)
print(“- 其他特征的相关性也可以从热力图中进一步分析。”)
相关文章:
机器学习Housing数据集
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml 设置Seaborn的美观风格 sns.set(style“whitegrid”) Step 1: 下载 Housing 数据集,并读入计算机 def load_housing_data(): housing …...
随着最新的补丁更新,Windows 再次变得容易受到攻击
SafeBreach专家Alon Leviev发布了一款名为 Windows Downdate的工具,可用于对Windows 10、Windows 11 和 Windows Server 版本进行降级攻击。 这种攻击允许利用已经修补的漏洞,因为操作系统再次容易受到旧错误的影响。 Windows Downdate 是一个开源Pyth…...
【Python】爬虫通过验证码
1、将验证码下载至本地 # 获取验证码界面html url http://www.example.com/a.html resp requests.get(url) soup BeautifulSoup(resp.content.decode(UTF-8), html.parser)#找到验证码图片标签,获取其地址 src soup.select_one(div.captcha-row img)[src]# 验证…...
dc-aichat(一款支持ChatGPT+智谱AI+讯飞星火+书生浦语大模型+Kimi.ai+MoonshotAI+豆包AI等大模型的AIGC源码)
dc-aichat 一款支持ChatGPT智谱AI讯飞星火书生浦语大模型Kimi.aiMoonshotAI豆包AI等大模型的AIGC源码。全网最易部署,响应速度最快的AIGC环境。PHP版调用各种模型接口进行问答和对话,采用Stream流模式通信,一边生成一边输出。前端采用EventS…...
检索增强生成
检索增强生成 检索增强生成简介 检索增强生成(RAG)旨在通过检索和整合外部知识来增强大语言模型生成文本的准确性和丰富性,其是一个集成了外部知识库、信息检索器、大语言模型等多个功能模块的系统。 RAG 利用信息检索、深度学习等多种技术…...
操作系统--进程
2.1.1 进程的概念、组成、特征 进程的概念 进程的组成 进程的特征 总结 2.1.2 进程的状态与转换,进程的组织 创建态、就绪态 运行态 阻塞态 终止态 进程状态的转换 进程的组织 链式方式 索引方式 2.1.3 进程控制 如何实现进程控制? 在下面的例子,将PCB2的是state设为1和和把…...
abap 可配置通用报表字段级日志监控
文章目录 1.功能需求描述1.1 功能1.2 效果展示2.数据库表解释2.1 表介绍3.数据库表及字段3.1.应用日志数据库抬头表:ZLOG_TAB_H3.2.应用日志数据库明细表:ZLOG_TAB_P3.3.应用日志维护字段配置表:ZLOG_TAB_F4.日志封装类5.代码6.调用方式代码7.调用案例程序demo1.功能需求描述 …...
OpenCV视觉分析之目标跟踪(11)计算两个图像之间的最佳变换矩阵函数findTransformECC的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 根据 ECC 标准 78找到两幅图像之间的几何变换(warp)。 该函数根据 ECC 标准 ([78]) 估计最优变换(warpMatri…...
PGMP-串串0203 项目集管理绩效域战略一致性
1.项目集管理绩效域 2.战略一致性 战略一致性包含内容商业论证BC项目集章程项目集路线图环境评估项目集风险管理策略 前期formulation sub-phaseplanning sub-phase组织的战略计划项目集风险管理策略项目集管理计划商业论证BC项目集章程项目集路线图环境评估...
HiveMetastore 的架构简析
HiveMetastore 的架构简析 Hive Metastore 是 Hive 元数据管理的服务。可以把元数据存储在数据库中。对外通过 api 访问。 hive_metastore.thrift 对外提供的 Thrift 接口定义在文件 standalone-metastore/src/main/thrift/hive_metastore.thrift 中。 内容包括用到的结构体…...
【WRF模拟】全过程总结:WPS预处理及WRF运行
【WRF模拟】全过程总结:WPS预处理及WRF运行 1 数据准备1.1 嵌套域设置(Customize domain)-基于QGis中gis4wrf插件1.2 静态地理数据1.2.1 叶面积指数LAI和植被覆盖度Fpar(月尺度)1.2.2 地面反照率(月尺度)1.2.3 土地利用类型+不透水面积1.2.4 数据处理:geotiff→tiff(W…...
linux基础理解和使用 iptables 防火墙
本文档旨在编写一份详尽的 iptables基础 使用指南,涵盖其核心概念、使用方法以及高级技巧。将结合图表和示例,更好地理解和应用 iptables。 1. 什么是 iptables? iptables 是 Linux 系统自带的包过滤防火墙,它与内核空间的 netf…...
【系统架构设计师】2024年下半年真题论文: 论软件维护及其应用(包括参考素材)
更多内容请见: 备考系统架构设计师-专栏介绍和目录 文章目录 真题题目(2024年下半年 试题2)论文素材参考软件维护的类型软件维护的方法软件维护应用案例分析软件维护面临的挑战与应对策略真题题目(2024年下半年 试题2) 请围绕 “论软件维护及其应用” 论题,依次从以下三…...
【数学二】线性代数-矩阵-初等变换、初等矩阵
考试要求 1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质. 2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可…...
MinerU容器构建教程
一、介绍 MinerU作为一款智能数据提取工具,其核心功能之一是处理PDF文档和网页内容,将其中的文本、图像、表格、公式等信息提取出来,并转换为易于阅读和编辑的格式(如Markdown)。在这个过程中,MinerU需要利…...
BFS 解决拓扑排序
BFS 解决拓扑排序 1.课程表1.1. 题⽬链接:1.2 题⽬描述:1.3. 解法:1.4 代码 2. 课程表2.1题⽬链接:2.2 题⽬描述:2.3解法:2.4代码 3. ⽕星词典(hard)3.1题⽬链接:3.2 题⽬…...
MySQL 程序设计课程复习大纲
作为一门基础的 MySQL 程序设计课程,期末复习的重点应放在常见的数据库操作、基本查询、数据建模、关系型数据库的规范化设计等方面。以下是针对基础课程的 MySQL 期末复习知识点。 1. MySQL 基础概念与数据库操作 数据库基础 数据库与表的概念数据库管理系统&…...
C++ : STL容器(适配器)之stack、queue剖析
STL容器适配器之stack、queue剖析 一、stack、queue的接口(一)stack 接口说明(二)queue 接口说明 二、stack、queue的模拟实现(一)stack、queue是容器适配器stack、queue底层默认容器--deque1、deque概念及…...
nuxt3安装pinia报错500[vite-node] [ERR_LOAD_URL]问题解决
按照pinia官网步骤安装运送服务会报一个500[vite-node] [ERR_LOAD_URL]问题,查阅各个网站资料没有找到有用信息. 最后解决:在package.json中把pinia的版本给降回0.5.5版本之后就正常了 "dependencies": {"element-plus/icons-vue": "^2.3.1",&q…...
青少年编程能力等级测评CPA试卷(2)Python编程(一级)
青少年编程能力等级测评CPA试卷(2) Python编程(一级) (考试时间90分钟,满分100分) 一、单项选择题(共20题,每题3.5分,共70分) 下列语句的输出结果是( &am…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...
Ray框架:分布式AI训练与调参实践
Ray框架:分布式AI训练与调参实践 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 Ray框架:分布式AI训练与调参实践摘要引言框架架构解析1. 核心组件设计2. 关键技术实现2.1 动态资源调度2.2 …...
