当前位置: 首页 > news >正文

机器学习Housing数据集

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml

设置Seaborn的美观风格

sns.set(style=“whitegrid”)

Step 1: 下载 Housing 数据集,并读入计算机

def load_housing_data():
housing = fetch_openml(name=“house_prices”, as_frame=True)
housing_df = housing.data

# 打印实际列名和列数,方便调试
print("数据集的列数:", housing_df.shape[1])
print("数据集的列名:", housing_df.columns)# 检查列数是否为 14,如果是则重命名列,否则跳过重命名步骤
if housing_df.shape[1] == 14:housing_df.columns = ["CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX","PTRATIO", "B", "LSTAT", "MEDV"]
else:print("数据列数不符,未进行重命名。请检查数据集。")return housing_df

读取数据

housing_df = load_housing_data()
print(“Housing 数据集的前 5 项数据:”)
print(housing_df.head())

Step 2: 定义特征

features = [
“CRIM”, “ZN”, “INDUS”, “CHAS”, “NOX”, “RM”, “AGE”, “DIS”, “RAD”, “TAX”,
“PTRATIO”, “B”, “LSTAT”, “MEDV”
]
print(f"\n定义的特征列为:{features}")

Step 3: 抽取五个特征:LSTAT、INDUS、NOX、RM、MEDV,绘制散点图矩阵

selected_features = [“LSTAT”, “INDUS”, “NOX”, “RM”, “MEDV”]
sns.pairplot(housing_df[selected_features], diag_kind=“kde”, markers=“o”)
plt.suptitle(“散点图矩阵(选取特征:LSTAT、INDUS、NOX、RM、MEDV)”, y=1.02)
plt.show()

Step 4: 选取其他五个特征绘制散点图矩阵

other_features = [“CRIM”, “AGE”, “DIS”, “RAD”, “TAX”]
sns.pairplot(housing_df[other_features], diag_kind=“kde”, markers=“o”)
plt.suptitle(“散点图矩阵(选取特征:CRIM、AGE、DIS、RAD、TAX)”, y=1.02)
plt.show()

Step 5: 计算相关系数矩阵,并绘制热力图

使用前面选定的五个特征加上自己选择的五个特征

all_selected_features = selected_features + other_features
correlation_matrix = housing_df[all_selected_features].corr()

绘制热力图

plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, fmt=“.2f”, cmap=“coolwarm”, square=True, cbar_kws={‘shrink’: .8})
plt.title(“相关系数矩阵热力图”)
plt.show()

总结 Housing 数据集的变化情况

print(“\n总结:\n通过散点图矩阵和相关系数热力图,我们可以观察到不同特征之间的关系。例如:”)
print(“- 房间数量(RM)与房价中位数(MEDV)呈正相关关系,房间数量越多,房价越高。”)
print(“- 人均犯罪率(CRIM)与地位较低人口比例(LSTAT)呈正相关关系,可能表明犯罪率与经济状况存在关联。”)
print(“- NOX和DIS的负相关性较强,可能表示距离市中心越远的地区空气污染物浓度越低。”)
print(“- 其他特征的相关性也可以从热力图中进一步分析。”)

相关文章:

机器学习Housing数据集

import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml 设置Seaborn的美观风格 sns.set(style“whitegrid”) Step 1: 下载 Housing 数据集,并读入计算机 def load_housing_data(): housing …...

随着最新的补丁更新,Windows 再次变得容易受到攻击

SafeBreach专家Alon Leviev发布了一款名为 Windows Downdate的工具,可用于对Windows 10、Windows 11 和 Windows Server 版本进行降级攻击。 这种攻击允许利用已经修补的漏洞,因为操作系统再次容易受到旧错误的影响。 Windows Downdate 是一个开源Pyth…...

【Python】爬虫通过验证码

1、将验证码下载至本地 # 获取验证码界面html url http://www.example.com/a.html resp requests.get(url) soup BeautifulSoup(resp.content.decode(UTF-8), html.parser)#找到验证码图片标签,获取其地址 src soup.select_one(div.captcha-row img)[src]# 验证…...

dc-aichat(一款支持ChatGPT+智谱AI+讯飞星火+书生浦语大模型+Kimi.ai+MoonshotAI+豆包AI等大模型的AIGC源码)

dc-aichat 一款支持ChatGPT智谱AI讯飞星火书生浦语大模型Kimi.aiMoonshotAI豆包AI等大模型的AIGC源码。全网最易部署,响应速度最快的AIGC环境。PHP版调用各种模型接口进行问答和对话,采用Stream流模式通信,一边生成一边输出。前端采用EventS…...

检索增强生成

检索增强生成 检索增强生成简介 检索增强生成(RAG)旨在通过检索和整合外部知识来增强大语言模型生成文本的准确性和丰富性,其是一个集成了外部知识库、信息检索器、大语言模型等多个功能模块的系统。 RAG 利用信息检索、深度学习等多种技术…...

操作系统--进程

2.1.1 进程的概念、组成、特征 进程的概念 进程的组成 进程的特征 总结 2.1.2 进程的状态与转换,进程的组织 创建态、就绪态 运行态 阻塞态 终止态 进程状态的转换 进程的组织 链式方式 索引方式 2.1.3 进程控制 如何实现进程控制? 在下面的例子,将PCB2的是state设为1和和把…...

abap 可配置通用报表字段级日志监控

文章目录 1.功能需求描述1.1 功能1.2 效果展示2.数据库表解释2.1 表介绍3.数据库表及字段3.1.应用日志数据库抬头表:ZLOG_TAB_H3.2.应用日志数据库明细表:ZLOG_TAB_P3.3.应用日志维护字段配置表:ZLOG_TAB_F4.日志封装类5.代码6.调用方式代码7.调用案例程序demo1.功能需求描述 …...

OpenCV视觉分析之目标跟踪(11)计算两个图像之间的最佳变换矩阵函数findTransformECC的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 根据 ECC 标准 78找到两幅图像之间的几何变换(warp)。 该函数根据 ECC 标准 ([78]) 估计最优变换(warpMatri…...

PGMP-串串0203 项目集管理绩效域战略一致性

1.项目集管理绩效域 2.战略一致性 战略一致性包含内容商业论证BC项目集章程项目集路线图环境评估项目集风险管理策略 前期formulation sub-phaseplanning sub-phase组织的战略计划项目集风险管理策略项目集管理计划商业论证BC项目集章程项目集路线图环境评估...

HiveMetastore 的架构简析

HiveMetastore 的架构简析 Hive Metastore 是 Hive 元数据管理的服务。可以把元数据存储在数据库中。对外通过 api 访问。 hive_metastore.thrift 对外提供的 Thrift 接口定义在文件 standalone-metastore/src/main/thrift/hive_metastore.thrift 中。 内容包括用到的结构体…...

【WRF模拟】全过程总结:WPS预处理及WRF运行

【WRF模拟】全过程总结:WPS预处理及WRF运行 1 数据准备1.1 嵌套域设置(Customize domain)-基于QGis中gis4wrf插件1.2 静态地理数据1.2.1 叶面积指数LAI和植被覆盖度Fpar(月尺度)1.2.2 地面反照率(月尺度)1.2.3 土地利用类型+不透水面积1.2.4 数据处理:geotiff→tiff(W…...

linux基础理解和使用 iptables 防火墙

本文档旨在编写一份详尽的 iptables基础 使用指南,涵盖其核心概念、使用方法以及高级技巧。将结合图表和示例,更好地理解和应用 iptables。 1. 什么是 iptables? iptables 是 Linux 系统自带的包过滤防火墙,它与内核空间的 netf…...

【系统架构设计师】2024年下半年真题论文: 论软件维护及其应用(包括参考素材)

更多内容请见: 备考系统架构设计师-专栏介绍和目录 文章目录 真题题目(2024年下半年 试题2)论文素材参考软件维护的类型软件维护的方法软件维护应用案例分析软件维护面临的挑战与应对策略真题题目(2024年下半年 试题2) 请围绕 “论软件维护及其应用” 论题,依次从以下三…...

【数学二】线性代数-矩阵-初等变换、初等矩阵

考试要求 1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质. 2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可…...

MinerU容器构建教程

一、介绍 MinerU作为一款智能数据提取工具,其核心功能之一是处理PDF文档和网页内容,将其中的文本、图像、表格、公式等信息提取出来,并转换为易于阅读和编辑的格式(如Markdown)。在这个过程中,MinerU需要利…...

BFS 解决拓扑排序

BFS 解决拓扑排序 1.课程表1.1. 题⽬链接:1.2 题⽬描述:1.3. 解法:1.4 代码 2. 课程表2.1题⽬链接:2.2 题⽬描述:2.3解法:2.4代码 3. ⽕星词典(hard)3.1题⽬链接:3.2 题⽬…...

MySQL 程序设计课程复习大纲

作为一门基础的 MySQL 程序设计课程,期末复习的重点应放在常见的数据库操作、基本查询、数据建模、关系型数据库的规范化设计等方面。以下是针对基础课程的 MySQL 期末复习知识点。 1. MySQL 基础概念与数据库操作 数据库基础 数据库与表的概念数据库管理系统&…...

C++ : STL容器(适配器)之stack、queue剖析

STL容器适配器之stack、queue剖析 一、stack、queue的接口(一)stack 接口说明(二)queue 接口说明 二、stack、queue的模拟实现(一)stack、queue是容器适配器stack、queue底层默认容器--deque1、deque概念及…...

nuxt3安装pinia报错500[vite-node] [ERR_LOAD_URL]问题解决

按照pinia官网步骤安装运送服务会报一个500[vite-node] [ERR_LOAD_URL]问题,查阅各个网站资料没有找到有用信息. 最后解决:在package.json中把pinia的版本给降回0.5.5版本之后就正常了 "dependencies": {"element-plus/icons-vue": "^2.3.1",&q…...

青少年编程能力等级测评CPA试卷(2)Python编程(一级)

青少年编程能力等级测评CPA试卷(2) Python编程(一级) (考试时间90分钟,满分100分) 一、单项选择题(共20题,每题3.5分,共70分) 下列语句的输出结果是( &am…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络&#xf…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) ​遍历字符串​:通过外层循环逐一检查每个字符。​遇到 ? 时处理​: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: ​与…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...