当前位置: 首页 > news >正文

求从2开始的第n个素数

方法一:暴力法

  • 思路:从2开始,逐个判断每个数是否为素数。素数是除了1和它自身外,不能被其他自然数整除的数。对于每个数m,从2到sqrt(m)遍历,如果能被整除则不是素数。当找到n个素数时停止。

  • C++ 代码如下

#include <iostream>
#include <cmath>
using namespace std;bool isPrime(int num) {if (num <= 1) return false;if (num <= 3) return true;if (num % 2 == 0 || num % 3 == 0) return false;/*for (int i = 5; i * i <= num; i = i + 6) {if (num % i == 0 || num % (i + 2) == 0) return false;}*/for(int i=5;i*i<=num;i++){if(num%i==0) return false;}return true;
}int nthPrime(int n) {int count = 0;int num = 2;while (true) {if (isPrime(num)) {count++;if (count == n) return num;}num++;}return -1;
}int main() {int n;cout << "Enter the value of n: ";cin >> n;cout << "The " << n << "th prime number is: " << nthPrime(n) << endl;return 0;
}

方法二:埃氏筛法(Sieve of Eratosthenes)改进

  • 思路:先创建一个足够大的布尔数组来标记数是否为素数。从2开始,将2的倍数标记为非素数,然后找到下一个未标记的数(即素数),重复这个过程。当找到n个素数时,可以得到第n个素数的值。

  • C++ 代码如下

#include <iostream>
#include <vector>
using namespace std;int nthPrime(int n) {if (n == 1) return 2;int scope = 100;int x = (int)(scope / log(scope));while (x < n) {scope++;x = (int)(scope / log(scope));}cout<< "scope: " << scope << endl;vector<bool> isPrime(scope, true);  // 假设一个较大的范围,可根据需要调整//vector<bool> isPrime(1000000, true);  // 假设一个较大的范围,可根据需要调整isPrime[0] = isPrime[1] = false;int count = 0;for (int i = 2; i < isPrime.size(); i++) {if (isPrime[i]) {count++;if (count == n) return i;for (int j = i * i; j < isPrime.size(); j += i) {isPrime[j] = false;}}}return -1;
}int main() {int n;cout << "Enter the value of n: ";cin >> n;cout << "The " << n << "th prime number is: " << nthPrime(n) << endl;return 0;
}

这两种方法中,埃拉托斯特尼筛法在处理较大的n值时效率更高,因为它避免了对许多数的重复判断。但需要注意内存使用情况,如果n非常大,可能需要更复杂的数据结构或算法优化。

拓展与总结:

  • 从不大于 n 的自然数随机选一个,它是素数的概率大约是 1 / l n ( n ) 1/ln(n) 1/ln(n)
    所以范围为n以内的素数个数为 n / l n ( n ) n/ln(n) n/ln(n) ,在n->无穷时成立,其他情况下近似成立。

  • 比如求第100个素数,设num的范围是x,则必须满足 x / l n ( x ) > = 100 x/ln(x)>=100 x/ln(x)>=100 ,解出的这个x才是我们需要的范围,在这个范围内我们才能找到第100个素数。

相关文章:

求从2开始的第n个素数

方法一&#xff1a;暴力法 思路&#xff1a;从2开始&#xff0c;逐个判断每个数是否为素数。素数是除了1和它自身外&#xff0c;不能被其他自然数整除的数。对于每个数m&#xff0c;从2到sqrt(m)遍历&#xff0c;如果能被整除则不是素数。当找到n个素数时停止。 C 代码如下&am…...

【Android】View—基础知识,滑动,弹性滑动

基础知识 什么是View 在 Android 中&#xff0c;View 是用户界面&#xff08;UI&#xff09;中的基本组件&#xff0c;用于绘制图形和处理用户交互。所有的 UI 组件&#xff08;如按钮、文本框、图片等&#xff09;都是 View 的子类。可以说&#xff0c;View 是构建 Android …...

MYSQL中的两种转义操作

在 MySQL 中&#xff0c;转义字符用于处理特殊字符,以防止语法错误或 SQL 注入攻击,而单双引号都是需要重点注意的字符 可以用转义符\ 和 两个连续的引号 来起到转义引号的作用 转义符转义: 这是users表中的数据 如果查询admin 或者 admin" 用户,可以用转义符\ 两个连…...

力扣题目解析--删除链表的倒数第n个节点

题目 给你一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表的头结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], n 2 输出&#xff1a;[1,2,3,5]示例 2&#xff1a; 输入&#xff1a;head [1], n 1 输出&#xff1a;[]示例 3&…...

Knowledge Graph-Enhanced Large Language Models via Path Selection

研究背景 研究问题&#xff1a;这篇文章要解决的问题是大型语言模型&#xff08;LLMs&#xff09;在生成输出时存在的事实不准确性&#xff0c;即所谓的幻觉问题。尽管LLMs在各种实际应用中表现出色&#xff0c;但当遇到超出训练语料库范围的新知识时&#xff0c;它们通常会生…...

Android 项目模型配置管理

Android 项目配置管理 项目模型相关的配置管理config.gradle文件&#xff1a;build.gradle文件&#xff1a; 参考地址 项目模型相关的配置管理 以下是一个完整的build.gradle和config.gradle示例&#xff1a; config.gradle文件&#xff1a; ext {// 模型相关配置&#xff0…...

「QT」几何数据类 之 QSizeF 浮点型尺寸类

✨博客主页何曾参静谧的博客&#x1f4cc;文章专栏「QT」QT5程序设计&#x1f4da;全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasolid…...

Essential Cell Biology--Fifth Edition--Chapter one(2)

1.1.1.3 Living Cells Are Self-Replicating Collections of Catalysts 催化剂集合 生物最常被引用的特性之一是它们的繁殖能力。对于细胞来说&#xff0c;这个过程包括复制它们的遗传物质和其他成分&#xff0c;然后分裂成两个&#xff0c;产生一对子细胞[daughter cells]&a…...

大语言模型LLMs在医学领域的最新进展总结

我是娜姐 迪娜学姐 &#xff0c;一个SCI医学期刊编辑&#xff0c;探索用AI工具提效论文写作和发表。 相比其他学科&#xff0c;医学AI&#xff0c;是发表学术成果最多的领域。 医学数据的多样性和复杂性&#xff08;包括文本、图像、基因组数据等&#xff09;&#xff0c;使得…...

云防护单节点2T抗攻击能力意味着什么?

随着互联网的发展&#xff0c;DDoS攻击的规模和频率不断增加&#xff0c;对企业和个人用户的网络服务造成了严重威胁。云防护服务作为一种高效的DDoS防护手段&#xff0c;逐渐成为许多企业的首选。本文将重点讨论云防护单节点2T&#xff08;太比特每秒&#xff09;抗攻击能力的…...

IDEA在编译时: java: 找不到符号符号: 变量 log

一、问题 IDEA在编译的时候报Error:(30, 17) java: 找不到符号符号: 变量 log Error:(30, 17) java: 找不到符号 符号: 变量 log 位置: 类 com.mokerson.rabbitmq.config.RabbitMqConfig 二、解决方案 背景&#xff1a;下载其他同事代码时&#xff0c;第一次运行&#xff0c…...

HTML 基础架构:理解网页的骨架

HTML的文档结构主要由以下几个部分组成&#xff1a;<html>、<head>和<body>。 <html>标签是HTML文档的根元素&#xff0c;用来包裹整个HTML文档的内容。<head>标签用于定义文档的头部&#xff0c;包含了一些元数据和其他不直接显示在页面上的内…...

FPGA学习笔记#5 Vitis HLS For循环的优化(1)

本笔记使用的Vitis HLS版本为2022.2&#xff0c;在windows11下运行&#xff0c;仿真part为xcku15p_CIV-ffva1156-2LV-e&#xff0c;主要根据教程&#xff1a;跟Xilinx SAE 学HLS系列视频讲座-高亚军进行学习 从这一篇开始正式进入HLS对C代码的优化笔记 目录 1.循环优化中的基…...

web实操4——servlet体系结构

servlet体系结构 我们基本都只实现service方法&#xff0c;其余几个都不用&#xff0c; 之前我们直接实现servlet接口&#xff0c;所有的方法都必须实现&#xff0c;不用也得写&#xff0c;不然报错&#xff0c;写了又不用当摆设。 能不能只要定义一个service方法就可以&…...

Linux开发讲课48--- Linux 文件系统概览

本文旨在高屋建瓴地来讨论 Linux 文件系统概念&#xff0c;而不是对某种特定的文件系统&#xff0c;比如 EXT4 是如何工作的进行具体的描述。另外&#xff0c;本文也不是一个文件系统命令的教程。 每台通用计算机都需要将各种数据存储在硬盘驱动器&#xff08;HDD&#xff09;…...

Node.js 模块详解

模块的概念 Node.js 运行在 V8 JavaScript 引擎上&#xff0c;通过 require() 函数导入相关模块来处理服务器端的各种进程。一个 Node.js 模块可以是一个函数库、类集合或其他可重用的代码&#xff0c;通常存储在一个或多个 .js 文件中。 例如&#xff0c;启动一个 Node.js 服…...

大厂面试真题-说说tomcat的优缺点

Tomcat作为服务器&#xff0c;特别是作为Java Web服务器&#xff0c;具有一系列优点和缺点。以下是对其优缺点的详细分析&#xff1a; 优点 开源免费&#xff1a; Tomcat是一个免费、开源的Web服务器&#xff0c;用户可以在任何环境下自由使用&#xff0c;无需支付任何费用。…...

Linux系统编译boot后发现编译时间与Windows系统不一致的解决方案

现象 如下图&#xff0c;从filezilla软件看虚拟机Linux中编译的uboot.img修改时间与Windows系统时间不同 解决过程 在Linux中查看编译的uboot详细信息&#xff0c;从而得到编译时间。终端输入ls -l后&#xff0c;如下图&#xff1a; 结论 说明在Linux是按照Windows系统时…...

WPS Office手机去广高级版

工具介绍功能特点 WPS Office是使用人数最多的移动办公软件&#xff0c;独有手机阅读模式&#xff0c;字体清晰翻页流畅&#xff1b;完美支持文字&#xff0c;表格&#xff0c;演示&#xff0c;PDF等51种文档格式&#xff1b;新版本具有海量精美模版及高级功能 安装环境 [名称…...

Python爬虫基础-正则表达式!

前言 正则表达式是对字符串的一种逻辑公式&#xff0c;用事先定义好的一些特定字符、及这些特定字符的组合&#xff0c;组成一个“规则的字符串”&#xff0c;此字符串用来表示对字符串的一种“过滤”逻辑。正在在很多开发语言中都存在&#xff0c;而非python独有。对其知识点…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...