昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类
昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类
1. 载入与处理数据集
在情感分类任务中,我们使用了IMDB数据集,首先需要对数据进行加载和处理。由于原数据集没有验证集,我们将训练集重新划分为训练集和验证集,以确保训练和验证过程中模型的性能得到充分评估。

2. 加载GPT序列分类模型,设置为二分类
在处理数据后,我们使用了OpenAIGPTForSequenceClassification模型,基于GPT模型进行文本分类。我们将模型设置为二分类任务,适应情感分类问题的需求。
以下是模型的加载与配置:
from mindnlp.transformers import OpenAIGPTForSequenceClassification# 加载GPT模型并设置为二分类
model = OpenAIGPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)# 配置pad_token_id并调整token embedding
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)

3. 设置训练与评估指标
为了对模型进行训练和评估,我们需要定义适当的训练和评估指标。在此步骤中,我们选择了适用于情感分类任务的标准指标,如准确率(Accuracy)、精确率(Precision)、召回率(Recall)等。

4. 最后的训练和评估结果
经过模型训练和评估后,我们得到了最终的结果。该模型能够有效地对IMDB数据集中的文本进行情感分类,并输出相关的评估指标。

通过上述步骤,我们使用MindSpore平台和GPT模型实现了情感分类任务,能够有效地对文本进行情绪分析,提供情感分类的预测结果。这一过程展示了GPT模型在自然语言处理任务中的应用,尤其是在情感分析方面的表现。
相关文章:
昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类
昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类 1. 载入与处理数据集 在情感分类任务中,我们使用了IMDB数据集,首先需要对数据进行加载和处理。由于原数据集没有验证集,我们将训练集重新划分为训练集和验证…...
【JAVA】会员等级互通匹配数据库表设计
1、使用数据库:mysql数据库 设计四张表: 会员互通合作商配置表 会员互通合作商会员等级配置表 会员互通合作日志表 会员互通合作等级映射表 CREATE TABLE user_level_partner ( id bigint NOT NULL AUTO_INCREMENT, partner_novarchar(100) DE…...
论文阅读:基于语义分割的非结构化田间道路场景识别
论文地址:DOI: 10.11975/j.issn.1002-6819.2021.22.017 概要 环境信息感知是智能农业装备系统自主导航作业的关键技术之一。农业田间道路复杂多变,快速准确地识别可通行区域,辨析障碍物类别,可为农业装备系统高效安全地进行路径规…...
linux部分问题以及解决方式
目录 1.ubuntu桌面不显示了,只有命令行1.1启动gdm3服务1.2安装lightdm桌面管理包 1.ubuntu桌面不显示了,只有命令行 有如下两种解决方式。 1.1启动gdm3服务 这种方法只能临时生效,每次重启都要手动启动 sudo service gdm3 restart 1.2安装…...
qt QTreeWidget详解
1、概述 QTreeWidget 是 Qt 框架中的一个类,用于以树形结构展示数据。它基于 QTreeView 并提供了更高级别的接口,使得添加、删除和管理树形结构中的项变得更加简单。QTreeWidget 支持多级嵌套,每个项(QTreeWidgetItem)…...
注意力机制的目的:理解语义;编码器嵌入高纬空间计算;注意力得分“得到S*V”;解码器掩码和交叉注意力层用于训练;最终的编码器和输出实现大模型
目录 注意力机制的目的:理解语义中的它是小白兔 词编码器嵌入高纬空间 计算注意力得分“得到S*V” 权重QKV:连接权重 训练阶段使用解码器:翻译后的语句 解码器掩码和交叉注意力层用于训练 最终的编码器和输出实现大模型 Transformer模型中,QKV QKV的作用 举例说明…...
[java][jdk]JDK各个版本的核心特性
JDK 8至JDK 21的主要新特性概览: JDK 8 Lambda表达式:引入了函数式编程的特性,使得代码更加简洁和灵活。Stream API:提供了一种新的抽象,可以让你以声明性方式处理集合数据。新的日期和时间API:引入了jav…...
双十一”买买买!法官告诉你注意这些法律问题
“双十一”等购物节来临之际,某些电商平台为了吸引消费者提前下单预订商品,通过大力宣传付定金可享受更多优惠等方式开启预售模式。那么,如果消费者在支付定金后,因各种原因最终没有支付尾款,能否要求商家退还定金&…...
PyQt5
基于PyQt5的重绘机制实现加载页面 效果预览代码说明控件初始化超时回调重绘事件缩放事件 代码获取 效果预览 直接看图,效果展现为跟随黑点顺时针转动,且有明暗变化 代码说明 控件初始化 initUI主要用于初始化用户界面(UI)。它创建了一个具有特定样式…...
【Linux】常用命令(2.6万字汇总)
文章目录 Linux常用命令汇总1. 基础知识1.1. Linux系统命令行的含义1.2. 命令的组成 2. 基础知识2.1. 关闭系统2.2. 关闭重启2.3. 帮助命令(help)2.4. 命令说明书(man)2.5. 切换用户(su)2.6.历史指令 3.目录…...
Vue3-06_路由
路由 后台路由是根据请求url,匹配请求处理的后台模块(路径) 前台根据访问路径,决定显示的内容。 路由就是: 访问hash 与内容的对应关系 路由的工作方式 用户点击页面的路由链接导致url地址栏中的Hash值发生了变化前…...
物理验证Calibre LVS | SMIC Process过LVS时VNW和VPW要如何做处理?
SMIC家工艺的数字后端实现PR chipfinish写出来的带PG netlist如下图所示。我们可以看到标准单元没有VNW和VPW pin的逻辑连接关系。 前几天小编在社区星球上分享了T12nm ananke_core CPU低功耗设计项目的Calibre LVS案例,就是关于标准单元VPP和VBB的连接问题。 目前…...
量化分析工具日常操作日记-5-通合科技
使用量化分析微信小程序工具“梦想兔企业智能风险分析助手”日常操作日记-5-军工-通合科技(300491)。 周末国家新政策,要大力支持军工行业,我用工具挖掘了两个低位股,供大家参考。通合科技(300491ÿ…...
windows和linux验证MD5码方式
一、linux linux自带MD5码验证: $ md5sum target_file.txt 二、windows windows自带的MD5码验证: $ certutil -hashfile target_file.txt MD5...
构造函数原型对象语法、原型链、原型对象
目录 一、前言 二、编程思想 面向过程 面向对象 三、构造函数 四、原型对象 constructor 属性 对象原型 原型继承 原型链 一、前言 通过本篇博客,我们将了解面向对象编程的一般特征,掌握基于构造函数原型对象的逻辑封装,掌握基于原…...
鸿蒙UI开发——自定义UI绘制帧率
1、概 述 随着设备屏幕的不断演进,当前主流设备采用LTPO屏幕(可变刷新率屏幕),此类屏幕支持在多个档位之间切换屏幕帧率。 对于快速变化的内容,如射击游戏,交互动画等,显示帧率越高࿰…...
鸿蒙基本组件结构
组件结构 1. 认识基本的组件结构 ArkTS通过装饰器Component 和Entry 装饰 struct 关键字声明的数据结构,构成一个自定义组件 自定义组件中提供了一个build函数,开发者需要在函数内以链式调用的方式进行基本的UI描述,UI描述的方法请参考UI描述…...
柔性鞋材振动刀智能视觉裁切机市场报告:未来几年年复合增长率CAGR为5.4%
震动刀切割设备是一种利用振动刀片在各种非金属材料表面上切割的设备,振动刀切割机利用刀片高频振动和360度旋转,能保证每分钟上万次的振动频率,可在平面进行垂直切割,锋利裁剪。震动刀切割设备切割速度快,可以单层切割…...
【计算机网络】基础知识,常识应用知识
局域网使用的是广播技术,广域网使用的是点对点技术,使用的协议不同。局域网工作在数据链路层,可以不要网络层,不存在路由选择问题。1968年6月,世界上最早的计算机网络是ARPAnet服务原语:请求、指示、相应、…...
【Linux进程篇1】认识冯·诺依曼体系结构(引出进程详解)
--------------------------------------------------------------------------------------------------------------------------------- 每日鸡汤: 用这生命中的每一秒,给自己一个不后悔的未来。 -----------------------------------------------…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...
