当前位置: 首页 > news >正文

昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

1. 载入与处理数据集

在情感分类任务中,我们使用了IMDB数据集,首先需要对数据进行加载和处理。由于原数据集没有验证集,我们将训练集重新划分为训练集和验证集,以确保训练和验证过程中模型的性能得到充分评估。

image.png

2. 加载GPT序列分类模型,设置为二分类

在处理数据后,我们使用了OpenAIGPTForSequenceClassification模型,基于GPT模型进行文本分类。我们将模型设置为二分类任务,适应情感分类问题的需求。

以下是模型的加载与配置:

from mindnlp.transformers import OpenAIGPTForSequenceClassification# 加载GPT模型并设置为二分类
model = OpenAIGPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)# 配置pad_token_id并调整token embedding
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)

image.png

3. 设置训练与评估指标

为了对模型进行训练和评估,我们需要定义适当的训练和评估指标。在此步骤中,我们选择了适用于情感分类任务的标准指标,如准确率(Accuracy)、精确率(Precision)、召回率(Recall)等。

image.png

4. 最后的训练和评估结果

经过模型训练和评估后,我们得到了最终的结果。该模型能够有效地对IMDB数据集中的文本进行情感分类,并输出相关的评估指标。

image.png


通过上述步骤,我们使用MindSpore平台和GPT模型实现了情感分类任务,能够有效地对文本进行情绪分析,提供情感分类的预测结果。这一过程展示了GPT模型在自然语言处理任务中的应用,尤其是在情感分析方面的表现。

相关文章:

昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类 1. 载入与处理数据集 在情感分类任务中,我们使用了IMDB数据集,首先需要对数据进行加载和处理。由于原数据集没有验证集,我们将训练集重新划分为训练集和验证…...

【JAVA】会员等级互通匹配数据库表设计

1、使用数据库:mysql数据库 设计四张表: 会员互通合作商配置表 会员互通合作商会员等级配置表 会员互通合作日志表 会员互通合作等级映射表 CREATE TABLE user_level_partner ( id bigint NOT NULL AUTO_INCREMENT, partner_novarchar(100) DE…...

论文阅读:基于语义分割的非结构化田间道路场景识别

论文地址:DOI: 10.11975/j.issn.1002-6819.2021.22.017 概要 环境信息感知是智能农业装备系统自主导航作业的关键技术之一。农业田间道路复杂多变,快速准确地识别可通行区域,辨析障碍物类别,可为农业装备系统高效安全地进行路径规…...

linux部分问题以及解决方式

目录 1.ubuntu桌面不显示了,只有命令行1.1启动gdm3服务1.2安装lightdm桌面管理包 1.ubuntu桌面不显示了,只有命令行 有如下两种解决方式。 1.1启动gdm3服务 这种方法只能临时生效,每次重启都要手动启动 sudo service gdm3 restart 1.2安装…...

qt QTreeWidget详解

1、概述 QTreeWidget 是 Qt 框架中的一个类,用于以树形结构展示数据。它基于 QTreeView 并提供了更高级别的接口,使得添加、删除和管理树形结构中的项变得更加简单。QTreeWidget 支持多级嵌套,每个项(QTreeWidgetItem&#xff09…...

注意力机制的目的:理解语义;编码器嵌入高纬空间计算;注意力得分“得到S*V”;解码器掩码和交叉注意力层用于训练;最终的编码器和输出实现大模型

目录 注意力机制的目的:理解语义中的它是小白兔 词编码器嵌入高纬空间 计算注意力得分“得到S*V” 权重QKV:连接权重 训练阶段使用解码器:翻译后的语句 解码器掩码和交叉注意力层用于训练 最终的编码器和输出实现大模型 Transformer模型中,QKV QKV的作用 举例说明…...

[java][jdk]JDK各个版本的核心特性

JDK 8至JDK 21的主要新特性概览: JDK 8 Lambda表达式:引入了函数式编程的特性,使得代码更加简洁和灵活。Stream API:提供了一种新的抽象,可以让你以声明性方式处理集合数据。新的日期和时间API:引入了jav…...

双十一”买买买!法官告诉你注意这些法律问题

“双十一”等购物节来临之际,某些电商平台为了吸引消费者提前下单预订商品,通过大力宣传付定金可享受更多优惠等方式开启预售模式。那么,如果消费者在支付定金后,因各种原因最终没有支付尾款,能否要求商家退还定金&…...

PyQt5

基于PyQt5的重绘机制实现加载页面 效果预览代码说明控件初始化超时回调重绘事件缩放事件 代码获取 效果预览 直接看图,效果展现为跟随黑点顺时针转动,且有明暗变化 代码说明 控件初始化 initUI主要用于初始化用户界面(UI)。它创建了一个具有特定样式…...

【Linux】常用命令(2.6万字汇总)

文章目录 Linux常用命令汇总1. 基础知识1.1. Linux系统命令行的含义1.2. 命令的组成 2. 基础知识2.1. 关闭系统2.2. 关闭重启2.3. 帮助命令(help)2.4. 命令说明书(man)2.5. 切换用户(su)2.6.历史指令 3.目录…...

Vue3-06_路由

路由 后台路由是根据请求url,匹配请求处理的后台模块(路径) 前台根据访问路径,决定显示的内容。 路由就是: 访问hash 与内容的对应关系 路由的工作方式 用户点击页面的路由链接导致url地址栏中的Hash值发生了变化前…...

物理验证Calibre LVS | SMIC Process过LVS时VNW和VPW要如何做处理?

SMIC家工艺的数字后端实现PR chipfinish写出来的带PG netlist如下图所示。我们可以看到标准单元没有VNW和VPW pin的逻辑连接关系。 前几天小编在社区星球上分享了T12nm ananke_core CPU低功耗设计项目的Calibre LVS案例,就是关于标准单元VPP和VBB的连接问题。 目前…...

量化分析工具日常操作日记-5-通合科技

使用量化分析微信小程序工具“梦想兔企业智能风险分析助手”日常操作日记-5-军工-通合科技(300491)。 周末国家新政策,要大力支持军工行业,我用工具挖掘了两个低位股,供大家参考。通合科技(300491&#xff…...

windows和linux验证MD5码方式

一、linux linux自带MD5码验证: $ md5sum target_file.txt 二、windows windows自带的MD5码验证: $ certutil -hashfile target_file.txt MD5...

构造函数原型对象语法、原型链、原型对象

目录 一、前言 二、编程思想 面向过程 面向对象 三、构造函数 四、原型对象 constructor 属性 对象原型 原型继承 原型链 一、前言 通过本篇博客,我们将了解面向对象编程的一般特征,掌握基于构造函数原型对象的逻辑封装,掌握基于原…...

鸿蒙UI开发——自定义UI绘制帧率

1、概 述 随着设备屏幕的不断演进,当前主流设备采用LTPO屏幕(可变刷新率屏幕),此类屏幕支持在多个档位之间切换屏幕帧率。 对于快速变化的内容,如射击游戏,交互动画等,显示帧率越高&#xff0…...

鸿蒙基本组件结构

组件结构 1. 认识基本的组件结构 ArkTS通过装饰器Component 和Entry 装饰 struct 关键字声明的数据结构,构成一个自定义组件 自定义组件中提供了一个build函数,开发者需要在函数内以链式调用的方式进行基本的UI描述,UI描述的方法请参考UI描述…...

柔性鞋材振动刀智能视觉裁切机市场报告:未来几年年复合增长率CAGR为5.4%

震动刀切割设备是一种利用振动刀片在各种非金属材料表面上切割的设备,振动刀切割机利用刀片高频振动和360度旋转,能保证每分钟上万次的振动频率,可在平面进行垂直切割,锋利裁剪。震动刀切割设备切割速度快,可以单层切割…...

【计算机网络】基础知识,常识应用知识

局域网使用的是广播技术,广域网使用的是点对点技术,使用的协议不同。局域网工作在数据链路层,可以不要网络层,不存在路由选择问题。1968年6月,世界上最早的计算机网络是ARPAnet服务原语:请求、指示、相应、…...

【Linux进程篇1】认识冯·诺依曼体系结构(引出进程详解)

--------------------------------------------------------------------------------------------------------------------------------- 每日鸡汤: 用这生命中的每一秒,给自己一个不后悔的未来。 -----------------------------------------------…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...

从零手写Java版本的LSM Tree (一):LSM Tree 概述

&#x1f525; 推荐一个高质量的Java LSM Tree开源项目&#xff01; https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree&#xff0c;专为高并发写入场景设计。 核心亮点&#xff1a; ⚡ 极致性能&#xff1a;写入速度超…...