Elasticsearch实战应用:从入门到精通
在当今这个数据爆炸的时代,如何快速、有效地从海量数据中检索信息,已经成为了许多企业和开发者面临的挑战。Elasticsearch,作为一个基于Lucene的搜索引擎,以其强大的全文搜索能力、分布式特性以及易用性,成为了解决这一问题的理想选择。本文将带你走进Elasticsearch的世界,从基础概念到实战应用,让你领略这款搜索引擎的魅力。
初识Elasticsearch
什么是Elasticsearch?
Elasticsearch是一个基于Apache Lucene(TM)的开源搜索引擎,它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开源发布,是当前最流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索、稳定、可靠、快速、安装使用方便。
为什么选择Elasticsearch?
- 高性能:Elasticsearch能够快速处理大数据量的搜索请求,提供毫秒级的搜索响应。
- 易扩展:作为一个分布式系统,Elasticsearch可以轻松地扩展到数十甚至数百台服务器。
- 高可用:通过主从复制和分片机制,Elasticsearch保证了数据的高可用性。
- 丰富的API:提供了丰富的RESTful API,方便开发者进行数据的索引、搜索、更新等操作。
Elasticsearch基础
安装与配置
Elasticsearch的安装相对简单,可以从官网下载对应操作系统的安装包进行安装。安装完成后,通过简单的配置文件修改,即可启动Elasticsearch服务。例如,在Linux系统中,你可以通过以下命令安装Elasticsearch:
sudo apt-get install elasticsearch
安装完成后,你需要修改elasticsearch.yml
配置文件,设置集群名称和节点名称,以便正确地加入到Elasticsearch集群中。
核心概念
- 索引(Index):类似于传统数据库中的“数据库”,是存储数据的地方。索引是Elasticsearch中的基本存储单元,它允许你存储、搜索和检索数据。
- 类型(Type):类似于传统数据库中的“表”,在7.x版本后已被弃用。类型允许你将索引中的数据进行分类,以便于管理和查询。
- 文档(Document):类似于传统数据库中的“行”,是Elasticsearch中存储的基本数据单位。文档是Elasticsearch中的最小数据单元,可以包含多个字段。
- 分片(Shard):为了提高系统的可扩展性和容错性,一个索引可以被分成多个分片。分片是Elasticsearch中数据分布和负载均衡的基本单元。
- 副本(Replica):为了提高数据的可用性,每个分片可以有多个副本。副本提供了数据的冗余存储,确保在节点故障时数据仍然可用。
基本操作
- 索引文档:将数据添加到Elasticsearch中。你可以通过HTTP POST请求将文档添加到索引中,例如:
POST /my_index/_doc
{"title": "Elasticsearch入门","content": "Elasticsearch是一个基于Lucene的搜索引擎。","date": "2024-11-11"
}
- 查询文档:从Elasticsearch中检索数据。你可以使用Elasticsearch的强大查询功能来检索文档,例如:
GET /my_index/_search
{"query": {"match": {"content": "Elasticsearch"}}
}
- 更新文档:修改已存在的文档。你可以通过HTTP POST请求更新文档的字段,例如:
POST /my_index/_doc/1/_update
{"doc": {"content": "Elasticsearch是一个强大的搜索引擎。"}
}
- 删除文档:从Elasticsearch中移除文档。你可以通过HTTP DELETE请求删除文档,例如:
DELETE /my_index/_doc/1
实战应用
日志分析
Elasticsearch在日志分析领域有着广泛的应用。通过将服务器日志、应用程序日志等数据索引到Elasticsearch中,可以快速地进行日志查询和分析。
场景描述
假设我们有一个大型的电商平台,每天产生大量的用户访问日志。我们需要对这些日志进行分析,以便于发现潜在的性能瓶颈和异常行为。
实施步骤
- 日志收集:使用Filebeat等日志收集工具,将日志数据实时发送到Elasticsearch。Filebeat是一个轻量级的日志收集器,它可以从文件中读取日志数据,并将其发送到Elasticsearch或其他日志分析工具。
- 索引配置:为日志数据创建索引,并配置合适的映射和设置。映射定义了文档中字段的数据类型和属性,这对于查询性能和结果的准确性至关重要。
- 数据查询:通过Kibana等可视化工具,对日志数据进行查询和分析。Kibana是一个开源的数据分析和可视化平台,它与Elasticsearch紧密集成,提供了丰富的图表和仪表板功能。
- 监控与报警:设置监控规则,当发现异常行为时自动触发报警。你可以使用Elasticsearch的Watcher功能来设置监控规则和报警。
搜索引擎
Elasticsearch也可以作为一个强大的搜索引擎,为网站提供搜索功能。
场景描述
假设我们需要为一个新闻网站提供一个搜索功能,用户可以搜索新闻标题和内容。
实施步骤
- 数据索引:将新闻数据索引到Elasticsearch中。你可以使用Elasticsearch的Bulk API来批量导入新闻数据,这样可以提高数据导入的效率。
- 搜索优化:配置合适的分词器和同义词,优化搜索结果。分词器负责将文本字段拆分成可搜索的词条,同义词则允许你使用不同的词汇来搜索相同的内容。
- 结果展示:通过自定义的前端页面,展示搜索结果。你可以使用Elasticsearch的Search API来获取搜索结果,并将其展示在前端页面上。
- 性能调优:根据搜索性能,调整Elasticsearch的配置,如增加分片和副本。分片和副本的数量会影响Elasticsearch的性能和可用性,合理的配置可以提高搜索的响应速度和系统的稳定性。
监控系统
Elasticsearch还可以用于构建监控系统,实时监控服务器和应用程序的状态。
场景描述
假设我们需要监控一个大型的分布式系统,实时监控系统的性能指标和日志信息。
实施步骤
- 数据收集:使用Metricbeat等监控工具,收集系统的性能指标和日志信息。Metricbeat是一个轻量级的监控工具,它可以收集系统和应用程序的性能指标,并将其发送到Elasticsearch。
- 数据存储:将收集到的数据存储到Elasticsearch中。你可以为不同的监控数据创建不同的索引,以便于管理和查询。
- 实时分析:通过Elasticsearch的聚合功能,进行实时数据分析。聚合功能允许你对数据进行分组和统计,以发现潜在的性能问题和趋势。
- 可视化展示:使用Grafana等可视化工具,展示监控数据。Grafana是一个开源的监控和分析平台,它与Elasticsearch紧密集成,提供了丰富的图表和仪表板功能。
Elasticsearch在大数据处理中的应用
Elasticsearch不仅在日志分析、搜索引擎和监控系统等领域有着广泛的应用,它在大数据处理领域同样展现出了巨大的潜力。以下是Elasticsearch在大数据处理中的几个关键应用方向。
实时数据分析
在大数据时代,企业需要实时分析数据以做出快速决策。Elasticsearch的实时搜索和分析能力使其成为处理实时数据流的理想工具。
场景描述
假设一个金融交易平台需要实时监控交易活动,以便及时发现异常交易行为,如欺诈或洗钱活动。
实施步骤
- 数据流集成:使用Logstash或Beats(如Filebeat、Metricbeat)将交易数据实时导入Elasticsearch。这些工具可以轻松地从各种数据源收集数据,并将其转换为Elasticsearch可以理解的格式。
- 实时索引:配置Elasticsearch以实时索引数据流。这意味着数据一旦被收集,就会立即被索引,以便可以被搜索和分析。
- 复杂查询与分析:利用Elasticsearch的聚合和脚本功能,执行复杂的查询和实时分析。例如,可以设置聚合查询来计算特定时间段内的交易量或交易金额。
- 结果可视化:将分析结果通过Kibana等可视化工具展示出来,以便业务分析师和决策者可以直观地理解数据,并据此做出决策。
数据挖掘
Elasticsearch的强大搜索和聚合功能使其在数据挖掘领域也大有可为,尤其是在非结构化数据的分析上。
场景描述
一个电子商务平台希望通过分析用户评论和反馈来改进产品和服务。
实施步骤
- 数据索引:将用户评论和反馈作为文档索引到Elasticsearch中。这些文档可能包含文本、评分和其他元数据。
- 文本分析:使用Elasticsearch的全文搜索功能来分析文本数据。可以执行关键词搜索、短语搜索和模糊搜索等操作。
- 情感分析:集成自然语言处理(NLP)工具,如Elasticsearch的Ingest Node或第三方插件,进行情感分析,以识别用户的情绪倾向。
- 模式识别:利用Elasticsearch的聚合功能识别评论中的模式和趋势,如最常见的问题、最受欢迎的产品特性等。
- 结果应用:将数据挖掘的结果反馈给产品团队,以指导产品改进和创新。
总结
Elasticsearch以其强大的搜索能力和分布式特性,在日志分析、搜索引擎和监控系统等多个领域都有着广泛的应用。通过本文的介绍,相信你对Elasticsearch有了更深入的了解。在实际应用中,根据具体需求选择合适的场景和配置,可以充分发挥Elasticsearch的优势。随着技术的发展和企业需求的变化,Elasticsearch的应用场景也在不断扩展。通过结合Elasticsearch与其他大数据技术,如Apache Kafka、Apache Spark等,可以构建更加强大和灵活的大数据处理平台。
相关文章:
Elasticsearch实战应用:从入门到精通
在当今这个数据爆炸的时代,如何快速、有效地从海量数据中检索信息,已经成为了许多企业和开发者面临的挑战。Elasticsearch,作为一个基于Lucene的搜索引擎,以其强大的全文搜索能力、分布式特性以及易用性,成为了解决这一…...

axios平替!用浏览器自带的fetch处理AJAX(兼容表单/JSON/文件上传)
fetch 是啥? fetch 函数是 JavaScript 中用于发送网络请求的内置 API,可以替代传统的 XMLHttpRequest。它可以发送 HTTP 请求(如 GET、POST 等),并返回一个 Promise,从而简化异步操作 基本用法 /* 下面是…...

【优选算法 — 滑动窗口】水果成篮 找到字符串中所有字母异位词
水果成篮 水果成篮 题目描述 因为只有两个篮子,每个篮子装的水果种类相同,如果从 0 开始摘,则只能摘 0 和 1 两个种类 ; 因为当我们在两个果篮都装有水果的情况下,如果再走到下一颗果树,果树的水果种类…...
Go 数据库查询与结构体映射
下面是关于如何使用 Go 进行数据库查询并映射数据到结构体的教程,重点讲解 结构体字段导出 和 db 标签 的使用。 Go 数据库查询与结构体映射教程 在 Go 中,我们可以使用 database/sql 或 sqlx 等库与数据库进行交互。为了方便地将数据库查询结果映射到结…...

Wi-Fi背后的工作原理与技术发展历程介绍【无线通信小百科】
1个视频说清楚WIFI:频段/历程/技术参数/常用模块 智能手机拥有率越来越高的今天,大家已经习惯了通过无线网络上网的方式。除了在外面需要用手机流量,我们通常在家里或者机场,商场都可以通过Wi-Fi连接上网。本期文章将为大家介绍Wi…...

2024 年(第 7 届)“泰迪杯”数据分析技能赛B 题 特殊医学用途配方食品数据分析 完整代码 结果 可视化分享
一、背景特殊医学用途配方食品简称特医食品,是指为满足进食受限、消化吸收障碍、代谢素乱或者特定疾病状态人群对营养素或者膳食的特殊需要,专门加工配置而成的配方食品,包括0月龄至12月龄的特殊医学用途婴儿配方食品和适用于1岁以上的特殊医…...

STM32学习笔记------编程驱动蜂鸣器实现音乐播放
1. 硬件准备 STM32开发板:STM32F407系列蜂鸣器:常见的蜂鸣器分为两类:有源蜂鸣器和无源蜂鸣器。若使用有源蜂鸣器,只需提供电源和控制信号即可;若使用无源蜂鸣器,则需要控制频率。外接电源(可选…...

ubuntu18.04 安装与卸载NCCL conda环境安装PaddlePaddle
cuda版本11.2 说明PaddlePaddle需要安装NCCL 1、Log in | NVIDIA Developer 登录官网 找到对应版本 官方提供了多种安装方式,本文使用Local installers (x86)本地安装 点击对应的版本下载如: nccl-local-repo-ubuntu1804-2.8.4-cuda11.2_1.0-1_amd6…...

AI有鼻子了,还能远程传输气味,图像生成香水
众所周知,图像、音乐能用AI生成,但出乎意料的是,气味也行。最近,一个名叫Osmo的初创公司宣布,他们成功地将气味数字化了。第一个成功的案例是“新鲜的夏季李子”,而且复现出的味道“闻起来”很不错。整个过…...

学习配置dify过程记录
最近在学习安装 Dify 并集成 Ollama 和 Xinference,学习过程中遇到很多问题,所以我都记录下来。 本人电脑环境:MacBook Pro 15.1系统 基本是基于B站教程一步步搭建: 【Dify快速入门 | 本地部署Dify基于Llama 3.1和OpenAI创建聊天机器人与知…...
简易抽奖器源码以及打包操作
import wx import random import time# 定义Myframe类,继承Frame class Myframe(wx.Frame):# 奖品rewards [桥本香奈, 二代CC, NaNa, 情深叉]# 构造方法def __init__(self):# 父类初始化super().__init__(None, title主界面, size(500, 400), pos(500, 200))# 创建面板&#x…...

一文了解什么是腾讯云开发
一文了解什么是腾讯云开发 关于云开发的猜想腾讯云开发腾讯云开发的优势无服务跨平台轻松托管节约成本 快速上手云开发环境快速搭建管理后台 云开发体验 关于云开发的猜想 说到云开发,作为开发者的大家是否大概就有了想法。比如说过去的开发工作都是在自己本地电脑…...

[CKS] K8S NetworkPolicy Set Up
最近准备花一周的时间准备CKS考试,在准备考试中发现有一个题目关于不安全项目修复的题目。 专栏其他文章: [CKS] Create/Read/Mount a Secret in K8S-CSDN博客[CKS] Audit Log Policy-CSDN博客 -[CKS] 利用falco进行容器日志捕捉和安全监控-CSDN博客[CKS] K8S Ne…...
【JAVA】Java基础—面向对象编程:构造方法-实现一个Car类,包含多个构造方法,创建不同的汽车对象
在Java中,构造方法则是用于创建对象的特殊方法。通过构造方法,可以在创建对象时初始化其属性。构造方法的重载允许我们根据不同的需求定义多个构造方法,从而灵活地创建对象。 我们可以将汽车的构造方法比作汽车的配置选项。比如,…...

初识网络编程TCP/IP
目录 前言相关名词解释应用层协议——HTTP传输层协议socketTCP帧头格式三次握手、四次挥手 UDPTCP的socket实现 参考博文 前言 刚碰到网络编程,会出现一堆协议、概念、这层次那技术的,头都大了,还是得总结总结…… 相关名词解释 ✨✨网络…...

快速入门Zookeeper
Zookeeper ZooKeeper作为一个强大的开源分布式协调服务,扮演着分布式系统中至关重要的角色。它提供了一个中心化的服务,用于维护配置信息、命名、提供分布式同步以及提供组服务等。通过其高性能和可靠的特性,ZooKeeper能够确保在复杂的分布式…...

Filter and Search 筛选和搜索
Goto Data Grid 数据网格 Filter and Search 筛选和搜索 Filter Drop-down Menus (Excel-style) 筛选器下拉菜单(Excel 样式) 要调用列的筛选器下拉菜单,请单击列标题中的筛选器图标。在 “Values” 选项卡中,用户可以从 Data …...

spark的学习-06
SparkSQL读写数据的方式 1)输入Source 方式一:给定读取数据源的类型和地址 spark.read.format("json").load(path) spark.read.format("csv").load(path) spark.read.format("parquet").load(path) 方式二:…...

Linux C/C++ Socket 编程
本文目录 Linux C语言 socket 编程 client 端头文件 unistd.h & arpa/inet.h1. **unistd.h**2. **arpa/inet.h** socket() 创建套接字sockaddr_in 结构体inet_pton()connect()send()recv()send() 和 recv() 中的 flags 参数**默认行为(flags 0)的特…...

Flutter错误: uses-sdk:minSdkVersion 16 cannot be smaller than version 21 declared
前言 今天要做蓝牙通信的功能,我使用了flutter_reactive_ble这个库,但是在运行的时候发现一下错误 Launching lib/main.dart on AQM AL10 in debug mode... /Users/macbook/Desktop/test/flutter/my_app/android/app/src/debug/AndroidManifest.xml Err…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...

通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...
大数据治理的常见方式
大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法,以下是几种常见的治理方式: 1. 数据质量管理 核心方法: 数据校验:建立数据校验规则(格式、范围、一致性等)数据清洗&…...

DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...

CTF show 数学不及格
拿到题目先查一下壳,看一下信息 发现是一个ELF文件,64位的 用IDA Pro 64 打开这个文件 然后点击F5进行伪代码转换 可以看到有五个if判断,第一个argc ! 5这个判断并没有起太大作用,主要是下面四个if判断 根据题目…...
前端工具库lodash与lodash-es区别详解
lodash 和 lodash-es 是同一工具库的两个不同版本,核心功能完全一致,主要区别在于模块化格式和优化方式,适合不同的开发环境。以下是详细对比: 1. 模块化格式 lodash 使用 CommonJS 模块格式(require/module.exports&a…...