图文组合-pytorch实现
在图文组合任务中,常见的图文融合方式有多种,比如简单的拼接、加权求和、注意力机制、跨模态Transformer等。为了让图片充分补充文本的语义信息,我们可以使用一种简单且有效的图文融合方法,比如通过注意力机制。
我们可以让文本特征作为查询(Query),图片特征作为键(Key)和值(Value),通过注意力机制让文本特征从图片特征中获取信息。这样,图片特征就可以在文本的指导下为每个文本单词提供补充信息。
核心步骤:
图片特征扩展:由于图片特征是 [1, 768],而文本特征是 [8, 768],我们可以将图片特征扩展成与文本特征相同的形状 [8, 768]。
注意力机制:使用文本特征作为查询(Query),图片特征作为键(Key)和值(Value),计算注意力权重并融合特征。
融合输出:得到新的文本表示,它不仅包含原始文本的语义信息,还从图片中获取了相关的视觉信息。
import torch
import torch.nn as nnclass ImageTextFusion(nn.Module):def __init__(self, feature_dim, num_heads):super(ImageTextFusion, self).__init__()self.feature_dim = feature_dimself.text_proj = nn.Linear(feature_dim, feature_dim) # 映射文本特征self.image_proj = nn.Linear(feature_dim, feature_dim) # 映射图片特征self.attention = nn.MultiheadAttention(embed_dim=feature_dim, num_heads=num_heads)def forward(self, image_feat, text_feat):"""image_feat: 图片特征, shape [1, 768]text_feat: 文本特征, shape [8, 768]"""# 扩展图片特征到与文本特征相同的形状image_feat_expanded = image_feat.expand(text_feat.size(0), -1) # [8, 768]# 映射特征image_feat_proj = self.image_proj(image_feat_expanded) # [8, 768]text_feat_proj = self.text_proj(text_feat) # [8, 768]# 将文本特征作为查询,图片特征作为键和值attn_output, attn_weights = self.attention(query=text_feat_proj.unsqueeze(1), # [8, 1, 768]key=image_feat_proj.unsqueeze(1), # [8, 1, 768]value=image_feat_proj.unsqueeze(1), # [8, 1, 768]need_weights=False)# 将输出重新变形回 [8, 768]fused_text_feat = attn_output.squeeze(1) # [8, 768]return fused_text_feat# 示例输入
image_feat = torch.randn(1, 768) # 图片特征
text_feat = torch.randn(8, 768) # 文本特征# 初始化模型
fusion_model = ImageTextFusion(feature_dim=768, num_heads=8)# 前向传播
fused_output = fusion_model(image_feat, text_feat)print(fused_output.shape) # 输出形状应为 [8, 768]
代码解析:
text_proj 和 image_proj:分别用于将文本特征和图片特征映射到相同的特征空间,以便进行特征融合。
MultiheadAttention:这是 PyTorch 提供的多头注意力机制。我们将文本特征作为 Query,图片特征作为 Key 和 Value,通过注意力机制,使得每个文本单词从图片特征中获取相关的信息。
image_feat.expand(text_feat.size(0), -1):扩展图片特征,使其与文本特征具有相同的形状 [8, 768]。
unsqueeze(1):将特征的维度增加一个维度,符合 MultiheadAttention 的输入格式。
squeeze(1):将多头注意力输出的维度恢复到 [8, 768]。
总结:
这种方法使用了注意力机制,让文本特征能够从图片特征中获取信息,从而实现图文融合。注意力机制的优势在于,它可以为每个文本单词动态地分配不同的图片信息。
相关文章:
图文组合-pytorch实现
在图文组合任务中,常见的图文融合方式有多种,比如简单的拼接、加权求和、注意力机制、跨模态Transformer等。为了让图片充分补充文本的语义信息,我们可以使用一种简单且有效的图文融合方法,比如通过注意力机制。 我们可以让文本特…...
CentOS AppStream 8 手动更新 yum源
由于CentOS 8的官方支持已在2021年12月31日结束,官方镜像中的CentOS 8包已被移除。因此,如果您仍然需要运行CentOS 8并更新其yum源,您可以考虑使用以下步骤来配置一个可用的yum源,例如阿里云的镜像源。 https://mirrors.aliyun.co…...
虚拟化环境中香港服务器内存如何分配与管理?
虚拟化技术通过创建抽象层来模拟硬件资源,使得可以在单一硬件上运行多个操作系统实例。这通常涉及两个主要组件:管理程序(Hypervisor)和虚拟机监控器(VMM)。管理程序直接安装在物理硬件上,负责创建和管理虚拟机,而VMM则用于监控和…...
Android源码中如何编译出fastboot.exe和adb.exe程序
1、方案背景说明 在进行android项目开发时,如果通用的fastboot工具无法满足项目的定制话的需求时,就需要对fastboot工具的源码进行自定义修改,并编译成新的fastboot和adb工具。 由于安卓源码的的编译通常使用的是ubuntu系统,默认…...
C++ 参数传递 笔记
目录 1、输入参数的传递方式-选择传值还是传引用? 处理用户信息 处理坐标 处理配置 处理ID 2、对于需要修改的参数,使用非const引用传递 有趣的例外:警惕表象的迷惑 需要警惕的陷阱 “糟糕”的update方法: “完美”的set_name与set…...
【Linux】注释和配置文件的介绍
目录 一、help vim-modes指令 二、vim命令模式下的注释 1、直接注释: 2、快捷键注释(比较麻烦,了解即可) 三、vim的配置文件 .vimrc 四、sudo指令的相关问题 一、help vim-modes指令 在底行模式输入该指令可以用于查看vim的十…...
安卓主板_基于联发科MTK MT8788平台平板电脑方案_安卓核心板开发板定制
联发科MT8788安卓核心板平台介绍: MTK8788设备具有集成的蓝牙、fm、wlan和gps模块,是一个高度集成的基带平台,包括调制解调器和应用处理子系统,启用LTE/LTE-A和C2K智能设备应用程序。该芯片集成了工作在2.0GHz的ARM Cortex-A73、最…...
CLIP(Contrastive Language-Image Pre-Training)在SOPHON BM1684X上进行推理
1、链接 https://github.com/sophgo/sophon-demo/tree/release/sample/CLIP2、开发环境中交叉编译生成sophon_arm-3.8.0-py3-none-any.whl 3、sail安装 算能官网技术资料中SDK-24.04.01的 libsophon_soc_0.4.1_aarch64.tar.gz sophon-mw-soc_0.4.1_aarch64.tar.gz SOPHON-SA…...
Ascend Extension for PyTorch的源码解析
1 源码下载 Ascend对pytorch代码的适配,可从以下链接中获取。 Ascend/pytorch 执行如下命令即可。 git clone https://gitee.com/ascend/pytorch.git2 目录结构解析 源码下载后,如果需要编译torch-npu,最好保持pytorch的源码版本匹配&…...
鸿蒙HarmonyOS开发:给应用添加基础类型通知和进度条类型通知(API 12)
文章目录 一、通知介绍1、通知表现形式2、通知结构3、请求通知授权 二、创建通知1、发布基础类型通知2、发布进度类型通知3、更新通知4、移除通知 三、设置通知通道1、通知通道类型 四、创建通知组五、为通知添加行为意图1、导入模块。2、创建WantAgentInfo信息。4、创建WantAg…...
从零开始使用YOLOv11——Yolo检测detect数据集自建格式转换为模型训练格式:20w+图片1w+类别代码测试成功
在之前的文章中记录了YOLO环境的配置安装和基本命令的一些使用,上一篇博文的地址快速链接:从零开始使用YOLOv8——环境配置与极简指令(CLI)操作:1篇文章解决—直接使用:模型部署 and 自建数据集:…...
自动化新时代:机器取代工作,我们该如何重塑自我?
内容概要 在自动化时代的浪潮中,技术的飞速发展对传统工作模式产生了深远影响。我们眼前浮现的是一个充满机遇与挑战的新世界。许多岗位面临被机器取代的威胁,然而,这一变化并不仅仅是消极的。在这个背景下,个体不仅需要重新审视…...
GEE 土地分类——利用Sentinel-2数据进行土地分类
目录 简介 函数 ee.Classifier.smileRandomForest(numberOfTrees, variablesPerSplit, minLeafPopulation, bagFraction, maxNodes, seed) Arguments: Returns: Classifier 代码 结果 简介 利用Sentinel-2数据进行土地分类的流程大致可分为以下几个步骤: 1. 数据获取…...
《C++ 游戏开发》
一、引言 在当今的数字娱乐时代,游戏开发已经成为一个充满活力和创新的领域。C 作为一种强大的编程语言,在游戏开发中占据着重要的地位。它具有高效的性能、丰富的功能和广泛的适用性,能够满足游戏开发中对性能和灵活性的高要求。本文将深入探…...
2024年11月10日系统架构设计师考试题目回顾
案例分析 试题一:质量属性 基于描述填空是什么质量属性,常规题。(性能,功能,安全,可用等等)可用性而言,王工建议采用 ping/echo 机制检测,不过从资源使用角度ÿ…...
测试实项中的偶必现难测bug--苹果支付丢单问题
问题描述: app支付后,由于某种原因(可能是网络、流量不稳定、或者用户快速频繁操作。。。)会造成一定概率性的回调苹果支付结果失败的情况出现,表现的直观现象就是客户反馈已经支付了,包括苹果支付也是有记录,但是我们的后台显示的是已取消状态的订单 验证难点:测试和…...
Elasticsearch的数据类型
Elasticsearch(简称 ES)支持多种数据类型,主要分为以下几类: 1. 基本数据类型 Text:用于全文搜索的文本字段。ES 会对其内容进行分词处理。Keyword:适用于精确匹配的字段,例如名称、标签等。ES 不会对其内容分词处理。Integer:整数类型,包括 byte、short、integer 和…...
SSL 证书申请以及配置流程
SSL 证书申请以及配置流程 手动申请免费 SSL 证书的简明指南 如果你希望手动为你的网站申请免费的 SSL 证书,Let’s Encrypt 提供了一个很棒的免费服务。而 Certbot 则是官方推荐的工具,可以帮助你完成证书的申请和配置。以下是如何一步步完成的详细说…...
[Docker#4] 镜像仓库 | 部分常用命令
目录 什么是 Docker Registry 镜像仓库生活案例 镜像仓库分类 镜像仓库工作机制 常用的镜像仓库 私有仓库 镜像仓库命令 镜像命令[部分] 容器命令[部分] 什么是 Docker Registry 定义:Docker Registry 负责存储、管理和分发镜像,并提供了登录认…...
工业通信协议对比:OPC-UA、Modbus、MQTT、HTTP
综合对比表 对比项OPC-UAModbusMQTTHTTP通信效率低,带宽消耗高高高,开销低,效率高低,带宽消耗大实时性一般,延迟较高高,延迟低高,低延迟低,延迟高性能消耗高,需要高性能…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
