图文组合-pytorch实现
在图文组合任务中,常见的图文融合方式有多种,比如简单的拼接、加权求和、注意力机制、跨模态Transformer等。为了让图片充分补充文本的语义信息,我们可以使用一种简单且有效的图文融合方法,比如通过注意力机制。
我们可以让文本特征作为查询(Query),图片特征作为键(Key)和值(Value),通过注意力机制让文本特征从图片特征中获取信息。这样,图片特征就可以在文本的指导下为每个文本单词提供补充信息。
核心步骤:
图片特征扩展:由于图片特征是 [1, 768],而文本特征是 [8, 768],我们可以将图片特征扩展成与文本特征相同的形状 [8, 768]。
注意力机制:使用文本特征作为查询(Query),图片特征作为键(Key)和值(Value),计算注意力权重并融合特征。
融合输出:得到新的文本表示,它不仅包含原始文本的语义信息,还从图片中获取了相关的视觉信息。
import torch
import torch.nn as nnclass ImageTextFusion(nn.Module):def __init__(self, feature_dim, num_heads):super(ImageTextFusion, self).__init__()self.feature_dim = feature_dimself.text_proj = nn.Linear(feature_dim, feature_dim) # 映射文本特征self.image_proj = nn.Linear(feature_dim, feature_dim) # 映射图片特征self.attention = nn.MultiheadAttention(embed_dim=feature_dim, num_heads=num_heads)def forward(self, image_feat, text_feat):"""image_feat: 图片特征, shape [1, 768]text_feat: 文本特征, shape [8, 768]"""# 扩展图片特征到与文本特征相同的形状image_feat_expanded = image_feat.expand(text_feat.size(0), -1) # [8, 768]# 映射特征image_feat_proj = self.image_proj(image_feat_expanded) # [8, 768]text_feat_proj = self.text_proj(text_feat) # [8, 768]# 将文本特征作为查询,图片特征作为键和值attn_output, attn_weights = self.attention(query=text_feat_proj.unsqueeze(1), # [8, 1, 768]key=image_feat_proj.unsqueeze(1), # [8, 1, 768]value=image_feat_proj.unsqueeze(1), # [8, 1, 768]need_weights=False)# 将输出重新变形回 [8, 768]fused_text_feat = attn_output.squeeze(1) # [8, 768]return fused_text_feat# 示例输入
image_feat = torch.randn(1, 768) # 图片特征
text_feat = torch.randn(8, 768) # 文本特征# 初始化模型
fusion_model = ImageTextFusion(feature_dim=768, num_heads=8)# 前向传播
fused_output = fusion_model(image_feat, text_feat)print(fused_output.shape) # 输出形状应为 [8, 768]
代码解析:
text_proj 和 image_proj:分别用于将文本特征和图片特征映射到相同的特征空间,以便进行特征融合。
MultiheadAttention:这是 PyTorch 提供的多头注意力机制。我们将文本特征作为 Query,图片特征作为 Key 和 Value,通过注意力机制,使得每个文本单词从图片特征中获取相关的信息。
image_feat.expand(text_feat.size(0), -1):扩展图片特征,使其与文本特征具有相同的形状 [8, 768]。
unsqueeze(1):将特征的维度增加一个维度,符合 MultiheadAttention 的输入格式。
squeeze(1):将多头注意力输出的维度恢复到 [8, 768]。
总结:
这种方法使用了注意力机制,让文本特征能够从图片特征中获取信息,从而实现图文融合。注意力机制的优势在于,它可以为每个文本单词动态地分配不同的图片信息。
相关文章:
图文组合-pytorch实现
在图文组合任务中,常见的图文融合方式有多种,比如简单的拼接、加权求和、注意力机制、跨模态Transformer等。为了让图片充分补充文本的语义信息,我们可以使用一种简单且有效的图文融合方法,比如通过注意力机制。 我们可以让文本特…...
CentOS AppStream 8 手动更新 yum源
由于CentOS 8的官方支持已在2021年12月31日结束,官方镜像中的CentOS 8包已被移除。因此,如果您仍然需要运行CentOS 8并更新其yum源,您可以考虑使用以下步骤来配置一个可用的yum源,例如阿里云的镜像源。 https://mirrors.aliyun.co…...
虚拟化环境中香港服务器内存如何分配与管理?
虚拟化技术通过创建抽象层来模拟硬件资源,使得可以在单一硬件上运行多个操作系统实例。这通常涉及两个主要组件:管理程序(Hypervisor)和虚拟机监控器(VMM)。管理程序直接安装在物理硬件上,负责创建和管理虚拟机,而VMM则用于监控和…...
Android源码中如何编译出fastboot.exe和adb.exe程序
1、方案背景说明 在进行android项目开发时,如果通用的fastboot工具无法满足项目的定制话的需求时,就需要对fastboot工具的源码进行自定义修改,并编译成新的fastboot和adb工具。 由于安卓源码的的编译通常使用的是ubuntu系统,默认…...
C++ 参数传递 笔记
目录 1、输入参数的传递方式-选择传值还是传引用? 处理用户信息 处理坐标 处理配置 处理ID 2、对于需要修改的参数,使用非const引用传递 有趣的例外:警惕表象的迷惑 需要警惕的陷阱 “糟糕”的update方法: “完美”的set_name与set…...
【Linux】注释和配置文件的介绍
目录 一、help vim-modes指令 二、vim命令模式下的注释 1、直接注释: 2、快捷键注释(比较麻烦,了解即可) 三、vim的配置文件 .vimrc 四、sudo指令的相关问题 一、help vim-modes指令 在底行模式输入该指令可以用于查看vim的十…...
安卓主板_基于联发科MTK MT8788平台平板电脑方案_安卓核心板开发板定制
联发科MT8788安卓核心板平台介绍: MTK8788设备具有集成的蓝牙、fm、wlan和gps模块,是一个高度集成的基带平台,包括调制解调器和应用处理子系统,启用LTE/LTE-A和C2K智能设备应用程序。该芯片集成了工作在2.0GHz的ARM Cortex-A73、最…...
CLIP(Contrastive Language-Image Pre-Training)在SOPHON BM1684X上进行推理
1、链接 https://github.com/sophgo/sophon-demo/tree/release/sample/CLIP2、开发环境中交叉编译生成sophon_arm-3.8.0-py3-none-any.whl 3、sail安装 算能官网技术资料中SDK-24.04.01的 libsophon_soc_0.4.1_aarch64.tar.gz sophon-mw-soc_0.4.1_aarch64.tar.gz SOPHON-SA…...
Ascend Extension for PyTorch的源码解析
1 源码下载 Ascend对pytorch代码的适配,可从以下链接中获取。 Ascend/pytorch 执行如下命令即可。 git clone https://gitee.com/ascend/pytorch.git2 目录结构解析 源码下载后,如果需要编译torch-npu,最好保持pytorch的源码版本匹配&…...
鸿蒙HarmonyOS开发:给应用添加基础类型通知和进度条类型通知(API 12)
文章目录 一、通知介绍1、通知表现形式2、通知结构3、请求通知授权 二、创建通知1、发布基础类型通知2、发布进度类型通知3、更新通知4、移除通知 三、设置通知通道1、通知通道类型 四、创建通知组五、为通知添加行为意图1、导入模块。2、创建WantAgentInfo信息。4、创建WantAg…...
从零开始使用YOLOv11——Yolo检测detect数据集自建格式转换为模型训练格式:20w+图片1w+类别代码测试成功
在之前的文章中记录了YOLO环境的配置安装和基本命令的一些使用,上一篇博文的地址快速链接:从零开始使用YOLOv8——环境配置与极简指令(CLI)操作:1篇文章解决—直接使用:模型部署 and 自建数据集:…...
自动化新时代:机器取代工作,我们该如何重塑自我?
内容概要 在自动化时代的浪潮中,技术的飞速发展对传统工作模式产生了深远影响。我们眼前浮现的是一个充满机遇与挑战的新世界。许多岗位面临被机器取代的威胁,然而,这一变化并不仅仅是消极的。在这个背景下,个体不仅需要重新审视…...
GEE 土地分类——利用Sentinel-2数据进行土地分类
目录 简介 函数 ee.Classifier.smileRandomForest(numberOfTrees, variablesPerSplit, minLeafPopulation, bagFraction, maxNodes, seed) Arguments: Returns: Classifier 代码 结果 简介 利用Sentinel-2数据进行土地分类的流程大致可分为以下几个步骤: 1. 数据获取…...
《C++ 游戏开发》
一、引言 在当今的数字娱乐时代,游戏开发已经成为一个充满活力和创新的领域。C 作为一种强大的编程语言,在游戏开发中占据着重要的地位。它具有高效的性能、丰富的功能和广泛的适用性,能够满足游戏开发中对性能和灵活性的高要求。本文将深入探…...
2024年11月10日系统架构设计师考试题目回顾
案例分析 试题一:质量属性 基于描述填空是什么质量属性,常规题。(性能,功能,安全,可用等等)可用性而言,王工建议采用 ping/echo 机制检测,不过从资源使用角度ÿ…...
测试实项中的偶必现难测bug--苹果支付丢单问题
问题描述: app支付后,由于某种原因(可能是网络、流量不稳定、或者用户快速频繁操作。。。)会造成一定概率性的回调苹果支付结果失败的情况出现,表现的直观现象就是客户反馈已经支付了,包括苹果支付也是有记录,但是我们的后台显示的是已取消状态的订单 验证难点:测试和…...
Elasticsearch的数据类型
Elasticsearch(简称 ES)支持多种数据类型,主要分为以下几类: 1. 基本数据类型 Text:用于全文搜索的文本字段。ES 会对其内容进行分词处理。Keyword:适用于精确匹配的字段,例如名称、标签等。ES 不会对其内容分词处理。Integer:整数类型,包括 byte、short、integer 和…...
SSL 证书申请以及配置流程
SSL 证书申请以及配置流程 手动申请免费 SSL 证书的简明指南 如果你希望手动为你的网站申请免费的 SSL 证书,Let’s Encrypt 提供了一个很棒的免费服务。而 Certbot 则是官方推荐的工具,可以帮助你完成证书的申请和配置。以下是如何一步步完成的详细说…...
[Docker#4] 镜像仓库 | 部分常用命令
目录 什么是 Docker Registry 镜像仓库生活案例 镜像仓库分类 镜像仓库工作机制 常用的镜像仓库 私有仓库 镜像仓库命令 镜像命令[部分] 容器命令[部分] 什么是 Docker Registry 定义:Docker Registry 负责存储、管理和分发镜像,并提供了登录认…...
工业通信协议对比:OPC-UA、Modbus、MQTT、HTTP
综合对比表 对比项OPC-UAModbusMQTTHTTP通信效率低,带宽消耗高高高,开销低,效率高低,带宽消耗大实时性一般,延迟较高高,延迟低高,低延迟低,延迟高性能消耗高,需要高性能…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
