深度学习:AT Decoder 详解
AT Decoder 详解
在序列到序列的模型架构中,自回归解码器(Autoregressive Translator, AT Decoder)是一种核心组件,其设计目标是确保生成的序列在语义和语法上的连贯性与准确性。自回归解码器通过逐步、依赖前一输出来生成新的输出,从而保证了输出的连续性。以下是关于自回归解码器的详细解释:
1. 工作原理
自回归解码器在生成序列的每一步依赖于所有之前的输出。这种依赖性是通过将前一时间步的输出作为当前时间步的输入来实现的,形成了一个递归的生成过程。
2. 结构和组件
自回归解码器通常包含以下几个关键组件:
a. 输入嵌入层
- 每个输出符号首先被转换为嵌入向量。这些嵌入向量通过学习得到的参数转换,能够将离散的符号表示为连续的、高维的向量。
b. 位置编码
- 由于自回归解码器通常基于Transformer架构,位置编码被添加到每个输入嵌入向量中,以注入序列中每个元素的位置信息,帮助模型理解序列中的顺序。
c. 屏蔽自注意力层
- 在解码过程中,为了防止未来信息的泄露,自注意力层被特别设计为屏蔽自注意力(Masked Self-Attention)。这种屏蔽确保每个位置只能关注到它之前的位置,而不是未来的位置。
d. 交叉注意力层
- 交叉注意力层允许解码器访问编码器的输出,从而获得输入序列的全局上下文信息。在这一层中,来自解码器的查询(Query)与编码器输出的键(Key)和值(Value)进行交互。
e. 前馈网络
- 每个注意力层后面通常跟有一个前馈网络,这是由两个线性变换和一个激活函数(通常是ReLU)组成的网络,用于进一步处理信息。
f. 残差连接和层归一化
- 每个子层的输出都通过残差连接加回到输入,并应用层归一化。这种设计帮助改善深层网络的训练效果,防止梯度消失问题。
3. 输出生成
在每个时间步,解码器使用softmax层处理最后一层的输出,将其转换为一个概率分布,这个分布表示下一个可能的输出符号。选择概率最高的符号作为此时间步的输出,然后将其反馈到解码器作为下一个时间步的输入。
4. 训练方法
自回归解码器通常采用教师强制策略进行训练。在这种策略中,不管模型在前一时间步的输出如何,都直接使用真实的前一输出作为当前步的输入。这有助于稳定训练过程并提高模型的学习效率。
5. 应用
自回归解码器广泛应用于机器翻译、文本生成、语音合成等任务,其中输出序列的质量至关重要。由于其高质量的输出特性,自回归解码器在需要生成连贯、逻辑一致的文本时尤其重要。
总结来说,自回归解码器通过逐步生成方法确保了输出序列的高质量,虽然这种方法可能牺牲了一些生成速度,但它在保证生成内容的连贯性和准确性方面具有不可比拟的优势。
相关文章:
深度学习:AT Decoder 详解
AT Decoder 详解 在序列到序列的模型架构中,自回归解码器(Autoregressive Translator, AT Decoder)是一种核心组件,其设计目标是确保生成的序列在语义和语法上的连贯性与准确性。自回归解码器通过逐步、依赖前一输出来生成新的输…...
pythons工具——图像的随机增强变换(只是变换了图像,可用于分类训练数据的增强)
从文件夹中随机选择一定数量的图像,然后对每个选定的图像进行一次随机的数据增强变换。 import os import random import cv2 import numpy as np from PIL import Image, ImageEnhance, ImageOps# 定义各种数据增强方法 def random_rotate(image, angle_range(-30…...
C++中volatile限定符详解
volatile是 C 和 C 中的一个类型限定符,它用于告诉编译器被修饰的变量具有特殊的属性,编译器在对该变量进行优化时需要特殊对待。以下是volatile限定符的主要作用: 1. 防止优化 内存访问顺序:在多线程环境或者与硬件交互的程序中…...
如何关闭Python解释器
方法1:采用sys.exit(0)正常终止程序,从图中可以看到,程序终止后shell运行不受影响。 方法2:采用os._exit(0)关闭整个shell,从图中看到,调用sys._exit(0)后整个shell都重启了(RESTART Shell&…...
《TCP/IP网络编程》学习笔记 | Chapter 9:套接字的多种可选项
《TCP/IP网络编程》学习笔记 | Chapter 9:套接字的多种可选项 《TCP/IP网络编程》学习笔记 | Chapter 9:套接字的多种可选项套接字可选项和 I/O 缓冲大小套接字多种可选项getsockopt & setsockoptSO_SNDBUF & SO_RCVBUF SO_REUSEADDR发生地址绑定…...
渗透测试---网络基础之HTTP协议与内外网划分
声明:学习素材来自b站up【泷羽Sec】,侵删,若阅读过程中有相关方面的不足,还请指正,本文只做相关技术分享,切莫从事违法等相关行为,本人一律不承担一切后果 目录 一、HTTP协议各版本介绍 二、HTTP请求的方…...
15分钟学 Go 第 45 天 : 使用Docker容器
第45天:使用Docker容器 目标 在本节中,我们将深入了解Docker及其基本用法,掌握如何使用Docker容器来简化开发和部署流程。 背景知识 Docker是一个开源平台,用于开发、运输和运行应用程序。它使我们能够使用容器技术将应用程序…...
DriveLM 论文学习
论文链接:https://arxiv.org/pdf/2312.14150 代码链接:https://github.com/OpenDriveLab/DriveLM 解决了什么问题? 当前,自动驾驶方案的性能仍然不足。一个必要条件就是泛化能力,需要模型能处理未经训练的场景或不熟…...
YoloV10改进策略:上采样改进|CARAFE,轻量级上采样|即插即用|附改进方法+代码
论文介绍 CARAFE模块概述:本文介绍了一种名为CARAFE(Content-Aware ReAssembly of FEatures)的模块,它是一种用于特征上采样的新方法。应用场景:CARAFE模块旨在改进图像处理和计算机视觉任务中的上采样过程࿰…...
光模块基础知识
1. 光模块的封装 光模块是光收发模块的简称,主要根据不同的外型来区分,而在同一外型中,又有着多种规格;在数据通信领域,最常见的光模块(根据外型区分)分别是SFF、GBIC、SFP、和XFP、QSFP 、XEN…...
【go从零单排】Closing Channels通道关闭、Range over Channels
🌈Don’t worry , just coding! 内耗与overthinking只会削弱你的精力,虚度你的光阴,每天迈出一小步,回头时发现已经走了很远。 📗概念 在 Go 语言中,通道(channel)的关闭是一个重要…...
初始JavaEE篇 —— 文件操作与IO
找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程程(ಥ_ಥ)-CSDN博客 所属专栏:JavaEE 目录 文件介绍 Java标准库中提供操作文件的类 文件系统操作 File类的介绍 File类的使用 文件内容操作 二进制文件的读写操作…...
GitLab实现 HTTP 访问和 SMTP 邮件发送
GitLab实现 HTTP 访问和 SMTP 邮件发送 本教程详细记录了如何配置 SMTP 邮件通知、实现外网 HTTP 访问,并分享在配置过程中遇到的问题及解决方法。 一、准备工作 安装 Docker:确保在 Synology NAS 上安装 Docker 应用。下载 GitLab 镜像:在…...
HarmonyOS ArkTS 下拉列表组件
Entry Component struct Index {defaultValue: string 下拉列表;// 定义选项数组,包含 value 和可选的 labeloptions: Array<SelectOption> [{ value: aaa },{ value: bbb },{ value: ccc },{ value: ddd },{ value: eee },{ value: fff },{ value: ggg },{…...
zabbix监控Linux系统
1. zabbix agent安装 #sudo rpm -Uvh https://repo.zabbix.com/zabbix/6.0/rhel/8/x86_64/zabbix-release-6.0-4.el8.noarch.rpm #sudo dnf clean all #yum install zabbix-agent -y Running transaction test Transaction test succeeded. Running transactionPreparing …...
线性表-数组描述补充 迭代器(C++)
补充线性表数组实现的迭代器部分 知识点: typedef是C语言中的一个关键字,它的主要作用是为一种数据类型定义一个新的名字(别名)。 在 C 的 STL(Standard Template Library)中,迭代器是连接容…...
vue3 + element-plus 的 upload + axios + django 文件上传并保存
之前在网上搜了好多教程,一直没有找到合适自己的,要么只有前端部分没有后端,要么就是写的不是很明白。所以还得靠自己摸索出来后,来此记录一下整个过程。 其实就是不要用默认的 action,要手动实现上传方式 http-reque…...
dm 创建数据库实例【window】
参考链接:配置实例 1)打开 DM 数据库配置助手 2)按照默认的进行 字符串大小写敏感:譬如 mysql 默认是大小写不敏感,如果在迁移中还选择了 保持对象大小写,那么就会出现一种情况就是每次查询等带有表名的都…...
Docker实践与应用举例:从入门到进阶
Docker实践与应用举例:从入门到进阶 在云计算和微服务架构日益盛行的今天,Docker作为一种轻量级的容器化技术,凭借其高效、灵活、可移植的特点,迅速成为了开发和运维团队的首选工具。本文将通过深入浅出的方式,探讨Do…...
【LeetCode】【算法】560. 和为 K 的子数组
LeetCode 560. 和为 K 的子数组 题目描述 给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列。 思路 思路:前缀和 定义数组preSum[nums.length1],在里面计算nums…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
