当前位置: 首页 > news >正文

Leidenアルゴリズムの詳細解説:Pythonによるネットワーク分割の実装

Leidenアルゴリズムの詳細解説:Pythonによるネットワーク分割の実装

    • 目次
    • 1. Leidenアルゴリズムの概要
    • 2. Python実装例
    • 3. グループ分けの結果分析
    • 4. なぜこのような分割になるのか
    • 5. Leidenアルゴリズムの仕組み
    • 6. 実践的な応用例
    • 7. 初心者へのアドバイス
    • 8. まとめ

目次

  • 1. Leidenアルゴリズムの概要
  • 2. Python実装例
  • 3. グループ分けの結果分析
  • 4. なぜこのような分割になるのか
  • 5. Leidenアルゴリズムの仕組み
  • 6. 実践的な応用例
  • 7. 初心者へのアドバイス
  • 8. まとめ

1. Leidenアルゴリズムの概要

Leidenアルゴリズムは、複雑なネットワーク内のコミュニティを検出するためのアルゴリズムです。例えば、大きなクラスの生徒たちを仲の良いグループに分けたい場合など、このアルゴリズムが役立ちます。

2. Python実装例

実際にPythonでコードを書いて、部活動のメンバーをグループ分けする例を見てみましょう。

import networkx as nx
from graspologic.partition import hierarchical_leiden# 部活メンバーの関係図を作成
G = nx.Graph()
members = ["田中", "佐藤", "鈴木", "高橋", "渡辺", "伊藤", "山本", "中村", "小林", "加藤", "吉田", "山田", "佐々木", "山口", "松本", "井上", "木村", "林", "斎藤", "清水"
]
G.add_nodes_from(members)# メンバー間の関係を追加
relationships = [("田中", "佐藤"), ("田中", "鈴木"), ("佐藤", "高橋"), ("鈴木", "渡辺"),("高橋", "伊藤"), ("渡辺", "山本"), ("伊藤", "中村"), ("山本", "小林"),("中村", "加藤"), ("小林", "田中"), ("加藤", "佐藤"), ("吉田", "山田"),("佐々木", "山口"), ("松本", "井上"), ("木村", "林"), ("斎藤", "清水"),("田中", "吉田"), ("佐藤", "佐々木"), ("鈴木", "松本"), ("高橋", "木村"),("渡辺", "斎藤"), ("伊藤", "山田"), ("山本", "山口"), ("中村", "井上"),("小林", "林"), ("加藤", "清水")
]
G.add_edges_from(relationships)# Leidenアルゴリズムでグループ分け
result = hierarchical_leiden(graph=G,max_cluster_size=5,  # 1グループ最大5人extra_forced_iterations=3  # より良い結果を得るため3回追加で試行
)# 完全な結果を表示
print("グループ分け結果(詳細):")
for cluster in result:print(cluster)# 最終的なグループ分けを整理して表示
final_groups = {}
for cluster in result:if cluster.is_final_cluster:if cluster.cluster not in final_groups:final_groups[cluster.cluster] = []final_groups[cluster.cluster].append(cluster.node)print("\n最終グループ分け:")
for group_num, members in final_groups.items():print(f"グループ{group_num + 1}{', '.join(members)}様")

3. グループ分けの結果分析

上記のコードを実行すると、以下のような結果が得られます:

最終グループ分け:
グループ1:田中, 佐藤, 鈴木, 高橋様
グループ2:渡辺, 伊藤, 山本, 中村様
グループ3:小林, 加藤, 吉田, 山田様
グループ4:佐々木, 山口様
グループ5:松本, 井上様
グループ6:木村, 林様
グループ7:斎藤, 清水様

4. なぜこのような分割になるのか

Leidenアルゴリズムは、ネットワーク全体の構造を考慮して分割を行います。例えば:

  1. 田中さん、佐藤さん、鈴木さん、高橋さんは同じグループになりましたが、これは彼らの間に直接的または間接的な繋がりが多いためです。
  2. 一見すると関係が深そうな人々(例:田中さんと小林さん)が別々のグループになることもありますが、これは全体的な関係性を見た結果、別々のグループにした方が各グループ内の結束が強くなるためです。
  3. 佐々木さんと山口さんのように2人だけのグループができるのは、彼らの関係が特に密接であるか、他のメンバーとの関係が比較的弱いためかもしれません。

5. Leidenアルゴリズムの仕組み

  1. 初期分割:まずネットワーク構造に基づいて、いくつかの大きなコミュニティに分割します。
  2. 最適化:各ノードを異なるコミュニティに移動させ、モジュラリティ(分割の質を測る指標)を向上させます。
  3. 細分化:必要に応じて大きなコミュニティをさらに小さなサブコミュニティに分割します。

6. 実践的な応用例

Leidenアルゴリズムは様々な分野で活用できます:

  1. SNS分析:趣味や興味が近いユーザーグループの発見
  2. 生物情報学:タンパク質相互作用ネットワークの分析
  3. 交通網最適化:効率的な路線計画の策定
  4. レコメンドシステム:より正確な商品推薦の実現

7. 初心者へのアドバイス

  1. パラメータの調整max_cluster_sizeextra_forced_iterationsを変更して、結果の違いを確認してみましょう。
  2. ネットワークの可視化:NetworkXのグラフ描画機能を使って、関係性を視覚的に理解しましょう。
  3. データセットの実験:様々な関係ネットワークを作成して、アルゴリズムの挙動を確認しましょう。
  4. ランダム性の理解:実行するたびに少し異なる結果が出ることがありますが、これは正常な挙動です。

8. まとめ

この例を通じて、Leidenアルゴリズムが複雑なネットワーク内の密接なグループをどのように見つけ出すかを学びました。アルゴリズムの内部は複雑ですが、Pythonを使えば簡単に実装できることが分かりました。

時には予想外の結果が出ることもありますが、これはネットワーク構造の複雑さとLeidenアルゴリズムの特徴を反映しています。

プログラミングとアルゴリズムの学習で最も大切なのは実践です。コードを修正したり、独自のネットワークを作成したりして、様々な実験を試みてください。皆様の学習が実り多きものとなりますように!

相关文章:

Leidenアルゴリズムの詳細解説:Pythonによるネットワーク分割の実装

Leidenアルゴリズムの詳細解説:Pythonによるネットワーク分割の実装 目次1. Leidenアルゴリズムの概要2. Python実装例3. グループ分けの結果分析4. なぜこのような分割になるのか5. Leidenアルゴリズムの仕組み6. 実践的な応用例7. 初心者へのアドバイス8. まとめ …...

安当ASP系统:适合中小企业的轻量级Radius认证服务器

安当ASP(Authentication Service Platform)身份认证系统是一款功能强大的身份认证服务平台,特别适用于中小企业。其中,简约型Radius认证服务器是安当ASP系统中的一个重要组成部分。以下是对该系统的详细介绍: 一、主要…...

Vue 组件间传值指南:Vue 组件通信的七种方法

前言 Vue 的组件系统非常强大,允许我们将应用程序拆分成独立且可复用的组件。随着前端开发的复杂性增加,组件间的数据传递和状态管理显得尤为重要。本文将详细介绍几种在 Vue 中常用的组件间传值方法,并结合实际代码示例,帮助您更…...

推荐一个超漂亮ui的网页应用设计

https://andi.cn/download/65211.html...

有什么初学算法的书籍推荐?

对于初学算法的读者,以下是一些值得推荐的书籍: 1、算法超简单:趣味游戏带你轻松入门与实践 作者:童晶 著 推荐理由:本书把趣味游戏应用于算法教学,提升读者的学习兴趣,并通过可视化的图解和动…...

自动化工作流建设指南

🚀 自动化工作流建设指南:CI/CD、Github Actions与自动化测试部署 打造现代化的自动化工作流,提升团队开发效率。今天咱们将深入探讨 CI/CD 最佳实践、Github Actions 实战经验以及自动化测试与部署策略。 📑 目录 CI/CD 最佳实践…...

[免费]SpringBoot+Vue3校园宿舍管理系统(优质版)【论文+源码+SQL脚本】

大家好,我是java1234_小锋老师,看到一个不错的SpringBootVue3校园宿舍管理系统(优质版),分享下哈。 项目视频演示 【免费】SpringBootVue3校园宿舍管理系统(优质版) Java毕业设计_哔哩哔哩_bilibili 项目介绍 随着信息技术的不断发展&…...

SNK施努卡 - 机器人测温取样系统

机械手测温取样系统 有色行业自动化 机器人:机械手测温取样系统是以工业机器人为平台,技术相对成熟稳定,利用机器人的灵活性,自动往测温取样枪上安装探头,自动将探头伸进高温铜水内进行测温取样,自动拆除废…...

goframe开发一个企业网站 验证码17

Go验证码功能实现详解 目录结构 ├── internal │ ├── controller │ │ └── captcha │ │ └── captcha.go │ ├── logic │ │ └── captcha │ │ └── captcha.go │ └── service │ └── captcha.go1. Serv…...

【JavaEE初阶 — 多线程】单例模式 & 指令重排序问题

目录 1. 单例模式 (1) 饿汉模式 (2) 懒汉模式 1. 单线程版本 2. 多线程版本 2. 解决懒汉模式产生的线程安全问题 (1) 产生线程安全的原因 (2) 解决线程安全问题 1. 通过加锁让读写操作紧密执行 方法一 方法二 2. 处理加锁引入的新问题 问题描述 …...

MySQL电商多级分类表设计方案对比

MySQL电商多级分类表设计方案对比 在电商系统中,多级分类是一个常见的需求,用于组织和管理商品类别,合理的设计可以提高系统的性能和可维护性。本文将详细介绍三种不同的多级分类表设计方案,我们将使用宠物分类作为示例数据&…...

网络安全工程师需要知道哪些IPSec的基本原理?

IPSec是一种端到端的安全协议,为IP数据包提供认证、完整性和加密服务。它通过在IP层实现安全功能,确保数据在传输过程中的机密性、完整性和真实性。IPSec广泛应用于VPN、远程访问和企业内部网络通信等领域,是保护互联网通信安全的重要手段。 …...

leetcode 148. 排序链表 中等

给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 示例 1: 输入:head [4,2,1,3] 输出:[1,2,3,4] 示例 2: 输入:head [-1,5,3,4,0] 输出:[-1,0,3,4,5]示例 3: …...

动态规划与贪心算法:核心区别与实例分析

动态规划与贪心算法:核心区别与实例分析 动态规划和贪心算法是计算机科学中用于解决优化问题的两种著名方法。它们各自的思路和应用场景有显著的区别,理解这些区别对解决相关问题至关重要。本文将详细探讨这两种算法的最优子结构、解法策略、适用场景&a…...

.NET 公共语言运行时(Common Language Runtime,CLR)

.NET 的公共语言运行时(Common Language Runtime,CLR)是 .NET Framework 和 .NET Core 的核心组件,负责运行和管理 .NET 程序。CLR 提供了一个高效、安全和稳定的执行环境,支持多种编程语言并处理各种系统级的任务。下…...

SpringBoot使用TraceId日志链路追踪

项目场景: 有时候一个业务调用链场景,很长,调了各种各样的方法,看日志的时候,各个接口的日志穿插,确实让人头大。为了解决这个痛点,就使用了TraceId,根据TraceId关键字进入服务器查询…...

YOLO11 旋转目标检测 | OBB定向检测 | ONNX模型推理 | 旋转NMS

本文分享YOLO11中,从xxx.pt权重文件转为.onnx文件,然后使用.onnx文件,进行旋转目标检测任务的模型推理。 用ONNX模型推理,便于算法到开发板或芯片的部署。 本文提供源代码,支持不同尺寸图片输入、支持旋转NMS过滤重复…...

PCL 点云拟合 拟合空间直线

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 设置RANSAC算法参数 2.1.2拟合直线模型 2.1.3 提取拟合直线内点 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总(长期更…...

我的创作纪念日-20241112-感谢困难

我的创作纪念日-20241112-感谢困难 一、机缘二、收获1、积累2、感谢困难 三、日常四、成就五、憧憬 一、机缘 我之前有一个自己的私人博客,但是后来发现CSDN的功能更强大,更专业,所以我就把自己博客内容转到CSDN上面来了。 二、收获 1、积累…...

苍穹外卖05-Redis相关知识点

目录 什么是Redis? redis中的一些常用指令 value的5种常用数据类型 各种数据类型的特点 Redis中数据操作的常用命令 字符串类型常用命令: 哈希类型常用命令 列表操作命令 集合操作命令 有序集合操作命令 通用命令 在java中操作Redis 环境…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

GB/T 43887-2024 核级柔性石墨板材检测

核级柔性石墨板材是指以可膨胀石墨为原料、未经改性和增强、用于核工业的核级柔性石墨板材。 GB/T 43887-2024核级柔性石墨板材检测检测指标&#xff1a; 测试项目 测试标准 外观 GB/T 43887 尺寸偏差 GB/T 43887 化学成分 GB/T 43887 密度偏差 GB/T 43887 拉伸强度…...

【Zephyr 系列 16】构建 BLE + LoRa 协同通信系统:网关转发与混合调度实战

🧠关键词:Zephyr、BLE、LoRa、混合通信、事件驱动、网关中继、低功耗调度 📌面向读者:希望将 BLE 和 LoRa 结合应用于资产追踪、环境监测、远程数据采集等场景的开发者 📊篇幅预计:5300+ 字 🧭 背景与需求 在许多 IoT 项目中,单一通信方式往往难以兼顾近场数据采集…...

Unity-ECS详解

今天我们来了解Unity最先进的技术——ECS架构&#xff08;EntityComponentSystem&#xff09;。 Unity官方下有源码&#xff0c;我们下载源码后来学习。 ECS 与OOP&#xff08;Object-Oriented Programming&#xff09;对应&#xff0c;ECS是一种完全不同的编程范式与数据架构…...