当前位置: 首页 > news >正文

leetcode 148. 排序链表 中等

给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。

示例 1:

输入:head = [4,2,1,3]
输出:[1,2,3,4]

示例 2:

输入:head = [-1,5,3,4,0]
输出:[-1,0,3,4,5]

示例 3:

输入:head = []
输出:[]

分析:

方法一:将链表的所有元素存放在数组中进行排序,再将排好序的数值依次放到链表里。

//方法一
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     struct ListNode *next;* };*/
int cmp(const void *a,const void *b)
{int *aa=(int*)a;int *bb=(int*)b;return *aa-*bb;
}struct ListNode* sortList(struct ListNode* head) {if(head==NULL)return NULL;struct ListNode *p=head;int num[50010]={0},t=0;while(p!=NULL)num[t++]=p->val,p=p->next;qsort(num,t,sizeof(int),cmp);p=head;int l=0;while(p!=NULL)p->val=num[l++],p=p->next;return head;
}

方法二:快速排序。

找到链表中的最大值和最小值,以它们的平均数mid作为分界值,小于等于mid的放到链表h1,大于mid的放到链表h2,之后再把h2挂在h1的后面即可。

//方法二 快速排序
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     struct ListNode *next;* };*/struct ListNode* sortList(struct ListNode* head) {if(head==NULL)return NULL;if(head->next==NULL)return head;struct ListNode *prehead=(struct ListNode*)malloc(sizeof(struct ListNode));prehead->next=head;struct ListNode *h1=(struct ListNode*)malloc(sizeof(struct ListNode));struct ListNode *h2=(struct ListNode*)malloc(sizeof(struct ListNode));h1->next=h2->next=NULL;int l=head->val,r=head->val;while(head->next!=NULL){head=head->next;l=fmin(l,head->val);r=fmax(r,head->val);}if(l==r){struct ListNode *p=prehead->next;free(prehead);free(h1);free(h2);return  p;     }int mid=(l+r)>>1;head=prehead->next;struct ListNode *p=head;while(head!=NULL){p=head;head=head->next;if(p->val<=mid)p->next=h1->next,h1->next=p;else p->next=h2->next,h2->next=p;}h1->next=sortList(h1->next);h2->next=sortList(h2->next);p=h1;while(p->next!=NULL)p=p->next;p->next=h2->next;struct ListNode *ans=h1->next;free(prehead);free(h1);free(h2);return ans;
}

方法三:自顶向下归并排序。

  • 找到链表的中点,以中点为分界,将链表拆分成两个子链表。寻找链表的中点可以使用快慢指针的做法,快指针每次移动 2 步,慢指针每次移动 1 步,当快指针到达链表末尾时,慢指针指向的链表节点即为链表的中点。
  • 对两个子链表分别排序。
  • 将两个排序后的子链表合并,得到完整的排序后的链表。
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     struct ListNode *next;* };*/struct ListNode* sortList(struct ListNode* head) {if(head==NULL)return NULL;if(head->next==NULL)return head;struct ListNode *prehead=(struct ListNode*)malloc(sizeof(struct ListNode));prehead->next=head;struct ListNode *fast,*low;fast=low=prehead;while(fast->next!=NULL){low=low->next;fast=fast->next;if(fast->next!=NULL)fast=fast->next;}if(fast==low){free(prehead);return fast;}struct ListNode *h1=(struct ListNode*)malloc(sizeof(struct ListNode));struct ListNode *h2=(struct ListNode*)malloc(sizeof(struct ListNode));h1->next=head;h2->next=low->next;low->next=NULL;h1->next=sortList(head);h2->next=sortList(h2->next);struct ListNode *h=(struct ListNode*)malloc(sizeof(struct ListNode));struct ListNode *p,*q,*r;p=h1->next,q=h2->next,r=h;while(p!=NULL||q!=NULL){if(p==NULL&&q!=NULL)r->next=q,q=q->next;else if(p!=NULL&&q==NULL)r->next=p,p=p->next;else if(p->val<q->val)r->next=p,p=p->next;else r->next=q,q=q->next;r=r->next;}//r->next=NULL;p=h->next;free(h1);free(h2);free(h);return p;
}

 

方法四:自底向上归并排序

具体做法如下。

  • 用 subLength 表示每次需要排序的子链表的长度,初始时 subLength=1。
  • 每次将链表拆分成若干个长度为 subLength 的子链表(最后一个子链表的长度可以小于 subLength),按照每两个子链表一组进行合并,合并后即可得到若干个长度为 subLength×2 的有序子链表(最后一个子链表的长度可以小于 subLength×2)。
  • 将 subLength 的值加倍,重复第 2 步,对更长的有序子链表进行合并操作,直到有序子链表的长度大于或等于 length,整个链表排序完毕。
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     struct ListNode *next;* };*/
//方法四 这里我把调试的部分也留下了
struct ListNode* sortList(struct ListNode* head) {if(head==NULL)return NULL;if(head->next==NULL)return head;struct ListNode *prehead=(struct ListNode*)malloc(sizeof(struct ListNode));prehead->next=head;int l=0,t=0;struct ListNode *p=head,*q=prehead;while(p!=NULL)l++,p=p->next;p=prehead->next;for(int i=1;i<l;i=fmin(i*2,l)){p=prehead->next;t=0;struct ListNode *index;while(p!=NULL){int l1=0,l2=0;struct ListNode *p1,*q1,*p2,*q2;p1=p;while(p!=NULL&&l1<i)l1++,q1=p,p=p->next;q1->next=NULL;if(p==NULL)break;p2=p;while(p!=NULL&&l2<i)l2++,q2=p,p=p->next;q2->next=NULL;
/*printf("i=%d l=%d\n",i,l);struct ListNode *test=p1;printf("p1=");while(test!=NULL)printf("%d ",test->val),test=test->next;printf("\n");test=p2;printf("p2=",i);while(test!=NULL)printf("%d ",test->val),test=test->next;printf("\n");
*/struct ListNode *h=(struct ListNode*)malloc(sizeof(struct ListNode));struct ListNode *r=h;while(p1!=NULL||p2!=NULL){if(p1==NULL&&p2!=NULL)r->next=p2,p2=p2->next;else if(p1!=NULL&&p2==NULL)r->next=p1,p1=p1->next;else if(p1->val<p2->val)r->next=p1,p1=p1->next;else r->next=p2,p2=p2->next;r=r->next;}if(t==0)prehead->next=h->next,t++,index=r;else index->next=h->next,index=r;;r->next=p;
/*test=h->next;printf("test=");while(test!=NULL)printf("%d ",test->val),test=test->next;printf("\n");
*/free(h);
/*printf("r=%d\n",r->val);test=p;printf("p=",i);while(test!=NULL)printf("%d ",test->val),test=test->next;printf("\n");test=prehead->next;printf("prehead=",i);while(test!=NULL)printf("%d ",test->val),test=test->next;printf("\n");
*/}}q=prehead->next;free(prehead);return q;
}

 

方法三、方法四来源:

作者:力扣官方题解
链接:https://leetcode.cn/problems/sort-list/solutions/492301/pai-xu-lian-biao-by-leetcode-solution/

相关文章:

leetcode 148. 排序链表 中等

给你链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [4,2,1,3] 输出&#xff1a;[1,2,3,4] 示例 2&#xff1a; 输入&#xff1a;head [-1,5,3,4,0] 输出&#xff1a;[-1,0,3,4,5]示例 3&#xff1a; …...

动态规划与贪心算法:核心区别与实例分析

动态规划与贪心算法&#xff1a;核心区别与实例分析 动态规划和贪心算法是计算机科学中用于解决优化问题的两种著名方法。它们各自的思路和应用场景有显著的区别&#xff0c;理解这些区别对解决相关问题至关重要。本文将详细探讨这两种算法的最优子结构、解法策略、适用场景&a…...

.NET 公共语言运行时(Common Language Runtime,CLR)

.NET 的公共语言运行时&#xff08;Common Language Runtime&#xff0c;CLR&#xff09;是 .NET Framework 和 .NET Core 的核心组件&#xff0c;负责运行和管理 .NET 程序。CLR 提供了一个高效、安全和稳定的执行环境&#xff0c;支持多种编程语言并处理各种系统级的任务。下…...

SpringBoot使用TraceId日志链路追踪

项目场景&#xff1a; 有时候一个业务调用链场景&#xff0c;很长&#xff0c;调了各种各样的方法&#xff0c;看日志的时候&#xff0c;各个接口的日志穿插&#xff0c;确实让人头大。为了解决这个痛点&#xff0c;就使用了TraceId&#xff0c;根据TraceId关键字进入服务器查询…...

YOLO11 旋转目标检测 | OBB定向检测 | ONNX模型推理 | 旋转NMS

本文分享YOLO11中&#xff0c;从xxx.pt权重文件转为.onnx文件&#xff0c;然后使用.onnx文件&#xff0c;进行旋转目标检测任务的模型推理。 用ONNX模型推理&#xff0c;便于算法到开发板或芯片的部署。 本文提供源代码&#xff0c;支持不同尺寸图片输入、支持旋转NMS过滤重复…...

PCL 点云拟合 拟合空间直线

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 设置RANSAC算法参数 2.1.2拟合直线模型 2.1.3 提取拟合直线内点 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总(长期更…...

我的创作纪念日-20241112-感谢困难

我的创作纪念日-20241112-感谢困难 一、机缘二、收获1、积累2、感谢困难 三、日常四、成就五、憧憬 一、机缘 我之前有一个自己的私人博客&#xff0c;但是后来发现CSDN的功能更强大&#xff0c;更专业&#xff0c;所以我就把自己博客内容转到CSDN上面来了。 二、收获 1、积累…...

苍穹外卖05-Redis相关知识点

目录 什么是Redis&#xff1f; redis中的一些常用指令 value的5种常用数据类型 各种数据类型的特点 Redis中数据操作的常用命令 字符串类型常用命令&#xff1a; 哈希类型常用命令 列表操作命令 集合操作命令 有序集合操作命令 通用命令 在java中操作Redis 环境…...

unity 玩家和炸弹切线计算方式

脚本挂在炸弹上&#xff01; using System.Collections; using System.Collections.Generic; using UnityEngine;public class TargetDetaction : MonoBehaviour {private Transform PlayerTF;private Transform bomb;private float radius;private string Player "Play…...

【MySQL】MySQL中的函数之REGEXP_LIKE

在 MySQL 中&#xff0c;REGEXP_LIKE() 函数用于检查一个字符串是否与正则表达式匹配。不过需要注意的是&#xff0c;REGEXP_LIKE() 并不是所有版本的 MySQL 都支持的函数。这个函数是在 MySQL 8.0 版本中引入的。 基本语法 REGEXP_LIKE(str, pat [, match_type ])str: 要测试…...

跟着尚硅谷学vue2—进阶版4.0—Vuex1.0

5. Vuex 1. 理解 Vuex 1. 多组件共享数据-全局事件总线实现 红线是读&#xff0c;绿线是写 2. 多组件共享数据-vuex实现 vuex 不属于任何组件 3. 求和案例-纯vue版 核心代码 1.Count.vue <template><div><h1>当前求和为&#xff1a;{{ sum }}</h1&…...

深度学习服务器租赁AutoDL

省钱绝招 #AutoDL #GPU #租显卡...

excel常用技能

1.基础技能 1.1 下拉框设置 a. 选中需要设置的列或单元格&#xff0c;数据 ---》 数据验证 b.验证条件 ---> 序列&#xff08;多个值逗号隔开&#xff09; 1.2 进度条百分比显示设置 开始 ---> 条件格式 --->新建规则--->编辑规则 1.3 相对引用和绝对引用…...

Mac电脑中隐藏文件(即以 . 开头的文件/文件夹)的显示和隐藏的两种方法

方法一&#xff1a;使用电脑快捷键&#xff0c;步骤如下&#xff1a; 1、点击一下桌面&#xff0c;用来激活 Finder &#xff1b; 2、同时按下 Command Shift 点&#xff0c;即 【Command Shift . 】&#xff1b; 3、 打开可能包含此类文件的文件夹&#xff0c;比如磁盘…...

【Linux】:进程信号(信号概念 信号处理 信号产生)

✨ 眼里有诗&#xff0c;自向远方 &#x1f30f; &#x1f4c3;个人主页&#xff1a;island1314 &#x1f525;个人专栏&#xff1a;Linux—登神长阶 ⛺️ 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f442;&#…...

Flink运行时架构以及核心概念

1.运行构架 1.提交作业后启动一个客户端进程&#xff0c;客户端解析参数&#xff08;-d -t 等等&#xff09;&#xff0c;后进行封装由Actor通信系统提交&#xff0c;取消&#xff0c;更新任务给JobManager。 2.JobManager&#xff08;进程&#xff09;通信系统一个组件叫分发…...

用 Python 从零开始创建神经网络(五):损失函数(Loss Functions)计算网络误差

用损失函数&#xff08;Loss Functions&#xff09;计算网络误差 引言1. 分类交叉熵损失&#xff08;Categorical Cross-Entropy Loss&#xff09;2. 分类交叉熵损失类&#xff08;The Categorical Cross-Entropy Loss Class&#xff09;展示到目前为止的所有代码3. 准确率计算…...

[CKS] K8S RuntimeClass SetUp

最近准备花一周的时间准备CKS考试&#xff0c;在准备考试中发现有一个题目关于RuntimeClass创建和挂载的题目。 ​ 专栏其他文章: [CKS] Create/Read/Mount a Secret in K8S-CSDN博客[CKS] Audit Log Policy-CSDN博客 -[CKS] 利用falco进行容器日志捕捉和安全监控-CSDN博客[CKS…...

【Python爬虫实战】轻量级爬虫利器:DrissionPage之SessionPage与WebPage模块详解

&#x1f308;个人主页&#xff1a;易辰君-CSDN博客 &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html ​ 目录 前言 一、SessionPage &#xff08;一&#xff09;SessionPage 模块的基本功能 &#xff08;二&#xff09;基本使…...

计算机网络-2.1物理层

文章目录 通信的基础概念信源、信宿、信号、信道码元、速率、波特带宽&#xff08;Hz&#xff09; 奈奎斯特采样定律和香农采样定律编码&解码&#xff0c;调制&解调常用的编码方法常用的调制方法 传输介质1. 导向型传输介质2. 非导向型传输介质物理层接口的特性 物理层…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...