当前位置: 首页 > news >正文

强化学习入门笔记(Reinforcement Learning,RL) 强推!

由于本人的近期研究方向涉及到强化学习,本科时已经学习过了,但是感觉还是有些概念和算法没有学懂学透,所以想重新系统性的学习一下,记录了整个学习过程,而且对当时没有理解不是特别深刻的内容有了一些更加深刻的理解,所以希望把学习的过程记录下来,也帮助其他的初学者能够快速入门强化学习。并且为了加深理解,会涉及一些公式。

(ps:第二遍学习了,知识真的越学越新,如果第一遍没有读懂,可能过一遍,等应用学习一段时间,可以返回来再看,真的有不同的理解),希望这份笔记能给你带来帮助。) 记录一下时间:

第一次撰写时间:20241111

强化学习(Reinforcement Learning)

一.总体概念

首先从大致上理解一下强化学习。传统的机器学习可以大致分为:有监督学习、无监督学习、强化学习。

  • 有监督学习 是从外部监督者提供的带标签的训练集中学习。
  • 非监督学习 是从为标注的数据集中找到隐含结构的学习过程,例如K-means算法
  • 强化学习更偏重于智能体与环境之间的交互。一个智能体(agent)在一个特定的环境(environment)中最大化它所能获得的奖励。通过感知所处的环境的状态(state)作出行动(action),与环境交互之后进行状态转移并得到对应的奖赏(reward),最终得到累积回报(return)。而这的方式被叫做强化学习或RL(Reinforcement Learning)。而RL学习的范式非常类似于人类学习知识的过程,也正因如此,RL被视为实现AGI重要途径。
    强化学习的图片

二.强化学习特点

  1. 试错学习:强化学习一般没有直接的指导信息,Agent 要以不断与 Environment 进行交互,通过试错的方式来获得最佳策略(Policy)。
  2. 延迟回报:强化学习的指导信息很少,而且往往是在事后(最后一个状态(State))才给出的。比如 围棋中只有到了最后才能知道胜负。

三.相关术语

根据上述对于强化学习的描述,可以注意到对应的术语包括environment, state,action,reward,return,以下将详细介绍对应的概念。

  • 环境(environment)是一个外部系统,智能体处于这个系统中,能够感知到这个系统并且能够基于感知到的状态作出一定的动作,并且环境根据作出的动作给智能体一个奖赏。
  • 状态(state):状态是对环境的当前状态的完整描述,不会隐藏环境的信息。所有的状态构成了状态空间(state space)
  • 行动(action):智能体处于当前环境状态下作出一个动作。所有可以执行的动作构成了动作空间(action space),其中包括离散动作空间(例如:前后左右四个动作)和连续的状态空间(例如:智能体的旋转角度,360度都可以)。
  • 奖励(reward):是由环境所给的一个反馈信号,该信号表明了智能体在某一步采取动作的表现,如果表现的很好,对应的reward大一点,否则就小一点。
  • 回报(return):智能体从当前状态一直到最终状态所获的累积奖励

(这里注意区别return和reward)

四.强化学习问题的基本设定:

根据上述的描述,已经对强化学习有了基本的概念,接下来让我们用形式化的数学语言来更好的表示强化学习问题:
强化学习可以用一个四元组表示,如下:

<A, S, R, P>
Action space : A 
State space : S
Reward: R : S × A × S → R
Transition : P :S × A → S 

说明:<A,S,R,P>是强化学习的形式化表达。其中A代表智能体的动作空间(包括离散的状态空间和连续的状态空间);S表示状态空间;R是奖赏,可以看出来是一个函数映射的形式,表示智能体处在状态s,执行了某一个动作a,与环境交互后转换到了s‘,得到的奖赏(Reward)为r。所以, ( s , a , s ′ ) → r (s,a,s')→r (sas)r;P表示状态转移函数,下一个状态完完全取决于环境。
根据上述的说明,此处也引出几个重要的概念,并详细介绍,对后续理解算法具有重要作用:

  1. 策略(Policy)
    策略是智能体用于决定下一步之行什么动作的规则。具体是指Agent在状态s时,所要作出的action的选择,一般定义为 π \pi π,是强化学习中的核心问题。可以视为智能体在感知到环境s后动作a到一个映射。这个策略可以是确定性的,即在当前状态下只会选择一个确定的动作( a = π ( s ) a= \pi(s) a=π(s),其中a为智能体处于状态s下用策略 π \pi π所选择的动作a);也可以是随机的(不确定的),这个时候 π \pi π不再是一个确定的动作,而是当前所能选择的动作的一个概率分布(例如当前状态下智能体可以执行4个上下左右动作,在当前的策略下,对应的概率为上:0.6;下:0.1;左:0.1;右:0.2,并且概率总和为1),以上的确定策略和随机策略可以用数学表示为:
    s t o c h a s t i c P o l i c y : ∑ π ( a ∣ s ) = 1 stochasticPolicy: \sum{\pi(a|s)}=1 stochasticPolicy:π(as)=1 d e t e r m i n i s t i c P o l i c y : π ( s ) : S → A deterministicPolicy: \pi(s):S→A deterministicPolicy:π(s):SA
  2. 状态转移(State Transition)
    智能体在环境中作出某种交互(动作)之后,将会转移到下一个状态,这种状态的转移取决于环境本身,而且这种转移也可以分为随机性和确定性转移。确定性转移表示根据当前状态和作出的动作只能转移到唯一的状态。而随机性转移则是由于环境的不确定性,导致可能下一个状态的转移是概率性的,可以用状态概率密度函数表示:
    p ( s ′ ∣ s , a ) = P ( S ′ = s ′ ∣ S = s , A = a ) p(s'|s,a)=P(S'=s'|S=s,A=a) p(ss,a)=P(S=sS=s,A=a)
    大多数情况下,对于智能体来说,环境是未知的,并且环境也可能发生变化,而上述的函数描述了在当前环境和行动下,衡量系统状态向某一个状态转移的概率是多少。
  3. 回报 (Return)
    累积回报
    回报也可以被称为累积奖赏,cumulated future reward,一般表示为U,定义为
    U t = R t + R t + 1 + . . . . R T U_t = R_t+R_{t+1}+....R_T Ut=Rt+Rt+1+....RT其中 R t R_t Rt代表每一步动作的奖赏reward,而对于智能体来说,就是最大化Return,一定是累积奖赏。
    未来的奖励不如现在等值的奖励那么好(比如一年后给100块不如现在就给),所以 R t + 1 R_{t+1} Rt+1的权重要比 R t R_{t} Rt的小。
    在实际表示中,加入了折扣回报率用来表示折扣回报,如下:
    U t = R t + γ R t + 1 + γ 2 R t + 2 + . . . U_t = R_t+\gamma R_{t+1}+\gamma ^2R_{t+2}+... Ut=Rt+γRt+1+γ2Rt+2+...其中 γ \gamma γ表示折扣率。

4.价值函数(Value-based function)
举例来说,在象棋游戏中,定义赢得游戏得1分,其他动作得0分,状态是棋盘上棋子的位置。仅从1分和0分这两个数值并不能知道智能体在游戏过程中到底下得怎么样。例如:象棋中在某一步中吃了对方的车,这步的reward会很大,但是由于这一步导致被将军,所以对于最终的目标来说,这一步也并不好。
为了对在整个游戏过程中对状态(当前的棋面对最后来说怎么样)进行评估,从而引入价值函数使用期望对未来的收益进行预测,一方面不必等待未来的收益实际发生就可以获知当前状态的好坏,另一方面通过期望汇总了未来各种可能的收益情况。使用价值函数可以很方便地评价不同策略的好坏。

注意价值函数和奖赏的区别

为了更加严谨,用数学表述:
Reward 定义的是评判一次交互中的立即的(immediate sense)回报好坏。而Value function则定义的是从长期看action平均回报的好坏。一个状态s的value是其长期期望Reward的高低。定义 V π ( s ) V_\pi(s) Vπ(s)是策略状态s长期期望收益,Q_\pi(s,a)是策略在状态s下,采取动作a的长期期望收益。
定义 G t G_t Gt为长期回报期望(Return)
G t = ∑ n = 0 N γ n r t + n G_t = \sum_{n=0}^N \gamma^nr_{t+n} Gt=n=0Nγnrt+n状态s的价值函数V为:
V π ( s ) = E π [ G t ∣ S t = s ] V_\pi(s) = E_\pi[G_t|S_t=s] Vπ(s)=Eπ[GtSt=s]
在状态s下采取动作a的动作价值函数Q为:
Q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] Q_\pi(s,a) = E_\pi[G_t|S_t=s,A_t=a] Qπ(s,a)=Eπ[GtSt=s,At=a]
在强化学习中,价值函数和Q函数之间存在一定的关系,可以通过转换公式相互表达。主要的转换方式如下:
从 Q 函数转换到状态价值函数

  1. 对于确定性策略
    如果我们选取的是一个贪婪策略,即在状态
    𝑠中选择能最大化 Q 值的动作,则价值函数可以表示为: V s = m a x a Q ( s , a ) V_s=max_aQ(s,a) Vs=maxaQ(s,a)该公式适用于寻找最优策略时(即在状态 s 中采取最佳动作的情况下)。
  2. 对于随机策略
    如果策略 π(a∣s) 是随机的,即每个动作 𝑎 在状态 s 的概率不相同,那么价值函数可以表示为 Q 函数的期望: V s = ∑ i π ( a i ∣ s ) ∗ Q ( s , a i ) V_s=\sum_i\pi(a_i|s)*Q(s,a_i) Vs=iπ(ais)Q(s,ai)这里,价值函数 𝑉(𝑠)是在策略 𝜋下,对所有动作加权的 Q 值之和。这个转换公式表示的是在随机策略下,期望的长期回报。
    从价值函数转换到 Q 函数
    假设我们知道执行动作 𝑎会从状态 𝑠 转移到下一个状态 𝑠′,那么 Q 函数可以表示为: Q ( s , a ) = E [ r + γ V ( s ′ ) ∣ s , a ] Q(s,a) =E[ r+\gamma V(s')|s,a] Q(s,a)=E[r+γV(s)s,a]在此情况下,Q 函数表示在状态 𝑠下采取动作 𝑎后获得的即时奖励 𝑟加上未来回报的折现值。而这个就是非常有名的Bellman等式

五.算法分类

按照环境是否已知划分:免模型学习(Model-Free) vs 有模型学习(Model-Based)

  • Model-free就是不去学习和理解环境,环境给出什么信息就是什么信息,常见的方法有policy optimization和Q-learning。
  • Model-Based是去学习和理解环境,学会用一个模型来模拟环境,通过模拟的环境来得到反馈。Model-Based相当于比Model-Free多了模拟环境这个环节,通过模拟环境预判接下来会发生的所有情况,然后选择最佳的情况。

一般情况下,环境都是不可知的,无法对环境进行建模,只能被动接受环境的反馈

按照学习方式划分:在线策略(On-Policy) vs 离线策略(Off-Policy)

  • On-Policy是指agent必须本人在场, 并且一定是本人边玩边学习。典型的算法为Sarsa。
  • Off-Policy是指agent可以选择自己玩, 也可以选择看着别人玩, 通过看别人玩来学习别人的行为准则,离线学习同样是从过往的经验中学习, 但是这些过往的经历没必要是自己的经历,任何人的经历都能被学习,也没有必要是边玩边学习,玩和学习的时间可以不同步。典型的方法是Q-learning,以及Deep-Q-Network。

按照学习目标划分:基于策略(Policy-Based)和基于价值(Value-Based)。

  • Policy-Based的方法直接输出下一步动作的概率,根据概率来选取动作。但不一定概率最高就会选择该动作,还是会从整体进行考虑。适用于非连续和连续的动作。常见的方法有Policy gradients。
  • Value-Based的方法输出的是动作的价值,选择价值最高的动作。适用于非连续的动作。常见的方法有Q-learning、Deep Q Network和Sarsa。
    更为厉害的方法是二者的结合:Actor-Critic,Actor根据概率做出动作,Critic根据动作给出价值,从而加速学习过程,常见的有A2C,A3C,DDPG等。

六.具体算法

  1. Q-learning算法(基于价值的方法)
  • 算法思路:Q-learning算法是一个基于价值函数(value-based)的方法,不直接输出每一个状态下对应的动作的概率,而是通过计算每一步下采取某一个动作的价值,从而动作价值最大(累计收益最大)的那个动作,从而得到最佳策略。
  • 算法流程:
    后续更新
  1. Deep Q Network(DQN)(基于价值的方法)
    后续更新

  2. Policy Gradient(基于策略的方法)
    后续更新

  3. Actor Critic(基于价值与基于策略二者结合)
    后续更新

相关文章:

强化学习入门笔记(Reinforcement Learning,RL) 强推!

由于本人的近期研究方向涉及到强化学习&#xff0c;本科时已经学习过了&#xff0c;但是感觉还是有些概念和算法没有学懂学透&#xff0c;所以想重新系统性的学习一下&#xff0c;记录了整个学习过程&#xff0c;而且对当时没有理解不是特别深刻的内容有了一些更加深刻的理解&a…...

C++ QT 工具日志异步分批保存

C QT 工具软件一般可以如此实现日志保存&#xff1a; #define THREAD_ID (reinterpret_cast<qulonglong>(QThread::currentThreadId()) & 0x0FFF) #define TIME (QDateTime::currentDateTime().toString("yyyy_MM_dd_hh_mm_ss_zzz"))#define LOGD(msg) qD…...

win32com库基于wps对Word文档的基础操作

win32com库基于wps对Word文档的基础操作 文章目录 win32com库基于wps对Word文档的基础操作新建/打开文档段落操作(Paragraph)字体设置(Font)图表操作(Shape) 参考链接: WAS API手册 新建/打开文档 import win32com import win32com.client as win32 # 启动WPS进程 word_obj …...

Kubernetes 网络之深度探索:网络模型与 CNI 插件

Kubernetes 网络之深度探索:网络模型与 CNI 插件 在 Kubernetes 中,网络是一个至关重要的组成部分。它不仅决定了容器之间如何通信,还影响着整个集群的可扩展性和稳定性。本节课将深入剖析 Kubernetes 的网络模型以及 CNI(Container Network Interface)网络插件。 一、K…...

Go 模块管理教程:go.mod 与依赖版本控制

Go 模块管理教程&#xff1a;go.mod 与依赖版本控制 Go 从版本 1.11 开始引入了 Go Modules&#xff0c;通过 go.mod 文件来管理项目的依赖关系和版本。Go 模块系统大大简化了 Go 项目的依赖管理&#xff0c;解决了之前 GOPATH 模式的许多问题。本教程将介绍如何使用 Go 模块管…...

大数据 ETL + Flume 数据清洗 — 详细教程及实例(附常见问题及解决方案)

大数据 ETL Flume 数据清洗 — 详细教程及实例 1. ETL 和 Flume 概述1.1 ETL&#xff08;Extract, Transform, Load&#xff09;1.2 Flume 概述 2. Flume 环境搭建2.1 下载并安装 Flume2.2 启动 Flume 3. Flume 配置和常见 Source、Sink、Channel3.1 Flume Source3.2 Flume Si…...

鸿蒙next版开发:订阅应用事件(ArkTS)

在HarmonyOS 5.0中&#xff0c;ArkTS提供了强大的应用事件订阅机制&#xff0c;允许开发者订阅和处理系统或应用级别的事件。这一功能对于监控应用行为、优化用户体验和进行性能分析至关重要。本文将详细介绍如何在ArkTS中订阅应用事件&#xff0c;并提供示例代码进行说明。 应…...

F litter 开发之flutter_local_notifications

flutter_local_notifications 消息通知 flutter_local_notifications地址 flutter_local_notifications: ^18.0.1class NotificationHelper {//工厂模式调用该类时&#xff0c;默认调用此方法&#xff0c;将实例对象返回出去static NotificationHelper? _instance null;sta…...

springboot参数校验

springboot 参数校验 Validated 以及 Valid - 唏嘘- - 博客园 SpringBoot参数校验Validated、Valid_springboot validate-CSDN博客...

Spring生态学习路径与源码深度探讨

引言 Spring框架作为Java企业级开发中的核心框架&#xff0c;其丰富的生态系统和强大的功能吸引了无数开发者的关注。学习Spring生态不仅仅是掌握Spring Framework本身&#xff0c;更需要深入理解其周边组件和工具&#xff0c;以及源码的底层实现逻辑。本文将从Spring生态的学…...

C++:set详解

文章目录 前言一、set概念介绍二、set的使用1. 插入删除相关2. 查找相关1&#xff09;find2&#xff09;count3&#xff09;lower_bound与upper_bound4&#xff09;equal_range 三、set的值是不能修改的原理四、基于哈希表的set总结 前言 根据应用场景的不同&#xff0c;STL总…...

(一)- DRM架构

一&#xff0c;DRM简介 linux内核中包含两类图形显示设备驱动框架&#xff1a; FB设备&#xff1a;Framebuffer图形显示框架; DRM&#xff1a;直接渲染管理器&#xff08;Direct Rendering Manager&#xff09;&#xff0c;是linux目前主流的图形显示框架&#xff1b; 1&am…...

Docker了解

Docker是一种容器化技术&#xff0c;它可以将应用程序和其依赖项打包到一个独立的、可移植的容器中&#xff0c;以便在不同的环境中运行。Docker基于Linux操作系统的容器化技术&#xff0c;可以提供更轻量、更快速、更灵活、更一致的应用部署和管理方式。 Docker的基本概念包括…...

【DL】YOLO11 OBB目标检测 | 模型训练 | 推理

本文进行YOLO11的旋转目标检测任务,旋转目标检测能够更精确地定位和描述那些非水平排列的目标,比如倾斜的飞机、船舶等。在原始的目标检测中,添加一个角度预测,实现定向边界框检测。 话不多说,先来个效果图!!! YOLO11中的旋转目标检测的特点 ▲更精确的定位:通过使用…...

vue读取本地excel文件并渲染到列表页面

1.安装插件(版本0.18.5) npm i xlsx 2.封装插件 <template><div class"container"><slot></slot></div> </template><script> import * as XLSX from xlsx export default {name: ReadExcel,props: {filePath: {type: …...

github 以及 huggingface下载模型和数据

runningcheese/MirrorSite: 镜像网站合集 (github.com) huggingface 下载模型和数据使用snapshot_download的方法 不会修改HuggingFace模型下载默认缓存路径&#xff1f;一篇教会你!_huggingface默认下载路径-CSDN博客 下载模型 使用snapshot_download 使用snapshot_down…...

使用 Vue 配合豆包MarsCode 实现“小恐龙酷跑“小游戏

作者&#xff1a;BLACK595 “小恐龙酷跑”&#xff0c;它是一款有趣的离线游戏&#xff0c;是Google给Chrome浏览器加的一个有趣的彩蛋。当我们浏览器断网时一只像素小恐龙便会出来提示断网。许多人认为这只是一个可爱的小图标&#xff0c; 但当我们按下空格后&#xff0c;小恐…...

51c视觉~合集6

我自己的原文哦~ https://blog.51cto.com/whaosoft/11603901 #CSWin-UNet 将自注意力机制集成到UNet中&#xff01;CSWin-UNet&#xff1a;U型分割方法&#xff0c;显著提高计算效率和感受野交互&#xff01;本文提出了CSWin-UNet&#xff0c;这是一种新颖的U型分割方法&…...

STM32(hal库)在串口中,USART和uart有什么区别?

在STM32的HAL库中&#xff0c;USART和UART都是用于串口通信的模块&#xff0c;但它们在功能特性和使用场景上存在一些区别。以下是对两者的详细比较&#xff1a; 一、功能特性 UART&#xff08;通用异步收发器&#xff09;&#xff1a; 是一种串行、异步、全双工的通信协议。通…...

机器学习、深度学习面试知识点汇总

下面是本人在面试中整理的资料和文字&#xff0c;主要针对面试八股做浅显的总结&#xff0c;大部分来源于ChatGPT&#xff0c;中间有借鉴一些博主的优质文章&#xff0c;已经在各文中指出原文。有任何问题&#xff0c;欢迎随时不吝指正。 文章系列图像使用动漫 《星游记》插图…...

AI图片售卖:是暴利新风口还是虚幻泡沫?哪些平台适合售卖AI图片

还记得去年大火的Midjourney吗&#xff1f;今年4月&#xff0c;Midjourney又发布了备受期待的V7版本&#xff0c;带来了更高的图像质量和创新功能。使用Midjourney、Stable Diffusion、DALLE等AI图片生成工具&#xff0c;创作者只需输入关键词即可获得高质量的原创图片。这一变…...

增量式网络爬虫通用模板

之前做过一个项目&#xff0c;他要求是只爬取新产生的或者已经更新的页面&#xff0c;避免重复爬取未变化的页面&#xff0c;从而节省资源和时间。这里我需要设计一个增量式网络爬虫的通用模板。可以继承该类并重写部分方法以实现特定的解析和数据处理逻辑。这样可以更好的节约…...

kafka消息积压排查

kafka监控搭建&#xff1a;https://insights.blog.csdn.net/article/details/139129552?spm1001.2101.3001.6650.1&utm_mediumdistribute.pc_relevant.none-task-blog-2%7Edefault%7Ebaidujs_baidulandingword%7EPaidSort-1-139129552-blog-132216491.235%5Ev43%5Econtrol…...

跟我学c++中级篇——理解类型推导和C++不同版本的支持

一、类型推导 在前面反复分析过类型推导&#xff08;包括前面提到的类模板参数推导CTAD&#xff09;&#xff0c;类型推导其实就是满足C语言这种强类型语言的要求即编译期必须确定对象的数据类型。换一句话说&#xff0c;理论上如果编译器中能够自动推导所有的相关数据类型&am…...

AndroidR车机TextToSpeech音频焦点异常问题分析

一、引言 文章《Android车机之TextToSpeech》介绍了TextToSpeech的使用,当前较多座舱系统语音服务都接入了原生TextToSpeech接口调用。 我司自研语音TTS服务,也接入了此TTS接口调用,对外提供TextToSpeech能力,播报时由客户端Client自行管理音频焦点,播报前申请音频焦点,…...

虚拟机CentOS 7 网络连接显示“以太网(ens33,被拔出)“、有线已拔出、CentOS7不显示网络图标

文章目录 一、问题描述二、解决方法1、查看网络连接方式2、开启相关服务3、确认虚拟机网络连接 一、问题描述 问题描述&#xff1a;在VmWare中安装CentOS7, 启动后界面不显示网络的图标。 在GONE桌面—》设置中找到网络设置&#xff0c;发现显示线缆已拔出。 二、解决方法 …...

day45python打卡

知识点回顾&#xff1a; tensorboard的发展历史和原理tensorboard的常见操作tensorboard在cifar上的实战&#xff1a;MLP和CNN模型 效果展示如下&#xff0c;很适合拿去组会汇报撑页数&#xff1a; 作业&#xff1a;对resnet18在cifar10上采用微调策略下&#xff0c;用tensorbo…...

【Android】Android Studio项目代码异常错乱问题处理(2020.3版本)

问题 项目打开之后&#xff0c;发现项目文件直接乱码&#xff0c; 这样子的 这本来是个Java文件&#xff0c;结果一打开变成了这种情况&#xff0c;跟见鬼一样&#xff0c;而且还不是这一个文件这样&#xff0c;基本上一个项目里面一大半都是这样的问题。 处理方法 此时遇到…...

【递归、搜索与回溯】综合练习(四)

&#x1f4dd;前言说明&#xff1a; 本专栏主要记录本人递归&#xff0c;搜索与回溯算法的学习以及LeetCode刷题记录&#xff0c;按专题划分每题主要记录&#xff1a;&#xff08;1&#xff09;本人解法 本人屎山代码&#xff1b;&#xff08;2&#xff09;优质解法 优质代码…...

第R9周:阿尔茨海默病诊断(优化特征选择版)

文章目录 1. 导入数据2. 数据处理2.1 患病占比2.2 相关性分析2.3 年龄与患病探究 3. 特征选择4. 构建数据集4.1 数据集划分与标准化4.2 构建加载 5. 构建模型6. 模型训练6.1 构建训练函数6.2 构建测试函数6.3 设置超参数 7. 模型训练8. 模型评估8.1 结果图 8.2 混淆矩阵9. 总结…...