当前位置: 首页 > news >正文

day55 图论章节刷题Part07([53.寻宝]prim算法、kruskal算法)

前言:使用最小生成树的方法解决将所有节点连接起来所需的最小路径问题。

prim算法

Prim算法是一种贪心算法,从任意一个顶点开始构建最小生成树。每次选择当前已加入生成树的顶点中,距离最近的尚未加入生成树的顶点,直到所有顶点都被加入生成树。

适用场景

  • 稠密图:Prim算法在稠密图(边数接近 n2 )中表现较好,因为它的复杂度为O(n^2),其中 n 为节点数量。
  • 单源最短路径:Prim算法可以从任意一个顶点开始构建最小生成树,适合需要从特定顶点开始的情况。
代码实现

prim三部曲:
第一步,选距离生成树最近节点
第二步,最近节点加入生成树
第三步,更新非生成树节点到生成树的距离(即更新minDist数组)

minDist数组 用来记录 每一个节点距离最小生成树的最近距离。由于题目中说了边的权重最大为10000,这里将边的最大值初始化为10001。

代码如下:

import java.util.*;
public class Main{public static void main (String[] args) {Scanner scan=new Scanner(System.in);int v=scan.nextInt();int e=scan.nextInt();int[][] grid=new int[v+1][v+1];//初始化距离为1001for(int i=0;i<=v;i++){Arrays.fill(grid[i],10001);}//根据输入的边的权值建立地图for(int i=0;i<e;i++){int s=scan.nextInt();int t=scan.nextInt();int k=scan.nextInt();grid[s][t]=k;grid[t][s]=k;}//初始化最小距离为10001int[] minDist=new int[v+1];Arrays.fill(minDist,1001);//建立数组判断节点是否在树中boolean[] isInTree=new boolean[v+1];//先选择第一个节点加入树中minDist[1]=0;//外部循环,遍历每一个节点for(int i=1;i<=v;i++){int minVal=Integer.MAX_VALUE;int cur=-1;//找到不在树中且距离最近的节点for(int j=1;j<=v;j++){if(!isInTree[j] && minDist[j]<minVal){minVal=minDist[j];cur=j;}}//将当前节点加入树中isInTree[cur]=true;//更新节点到数的距离,主要更新与新加入的节点相连的节点for(int j=1;j<=v;j++){if(!isInTree[j] && grid[cur][j]<minDist[j]){minDist[j]=grid[cur][j];}}}//prim算法的循环结束,计算路径总和int result=0;for(int i=2;i<=v;i++){result+=minDist[i];}System.out.println(result);}
}

注意:外部循环是为了确保每个节点都被遍历到。第一个内部循环是找到距离最小生成树最近的节点;第二个内部循环是更新minDist。

kruskal算法

Kruskal算法也是一种贪心算法,但它是从全局角度出发,先将所有边按权重从小到大排序,然后依次选择不形成环的边加入生成树,直到生成树包含所有顶点。

适用场景

  • 稀疏图:Kruskal算法在稀疏图(边数远小于 n2)中表现较好,因为它的复杂度为 nlogn,其中n 为边的数量。
  • 全局最优:Kruskal算法从全局角度出发,适合需要考虑所有边的情况。

代码实现

在代码中,我们可以使用并查集将两个节点加入同一个集合并判断两个节点是否在同一个集合。
时间复杂度:nlogn (快排) + logn (并查集) ,所以最后依然是 nlogn ,n为边的数量。

代码如下:

import java.util.*;
//定义边的类
class Edge{int l,r,val;Edge(int l,int r,int val){this.l=l;this.r=r;this.val=val;}
}public class Main{//题目中节点最多10000,所以初始化并查集的节点10001public static int n=10001;public static int[] father=new int[n];public static void init(){for(int i=0;i<n;i++){father[i]=i;}}public static int find(int u){return u==father[u]?u:(father[u]=find(father[u]));}public static void join(int u,int v){u=find(u);v=find(v);if(u==v) return;else father[v]=u;}public static void main (String[] args) {Scanner scan=new Scanner(System.in);int v=scan.nextInt();int e=scan.nextInt();List<Edge> edgeList=new LinkedList<>(); for(int i=0;i<e;i++){int l=scan.nextInt();int r=scan.nextInt();int val=scan.nextInt();edgeList.add(new Edge(l,r,val));}//排序edgeList.sort(Comparator.comparingInt(edge -> edge.val));init();int result=0;for(Edge edge:edgeList){int x=find(edge.l);int y=find(edge.r);if(x!=y){result+=edge.val;join(x,y);}}System.out.println(result);}
}

相关文章:

day55 图论章节刷题Part07([53.寻宝]prim算法、kruskal算法)

前言&#xff1a;使用最小生成树的方法解决将所有节点连接起来所需的最小路径问题。 prim算法 Prim算法是一种贪心算法&#xff0c;从任意一个顶点开始构建最小生成树。每次选择当前已加入生成树的顶点中&#xff0c;距离最近的尚未加入生成树的顶点&#xff0c;直到所有顶点…...

LeetCode 93-复制 IP地址

题目链接&#xff1a;LeetCode93 欢迎留言交流&#xff0c;每天都会回消息。 class Solution {//定义结果集&#xff0c;返回最终结果List<String> rs new ArrayList<>();public List<String> restoreIpAddresses(String s) {//将字符串包装为可变长度的字…...

海底捞点单

单点锅底推荐&#xff1a; 番茄锅底通31 牛油麻辣通44 清汤麻辣备44 菌汤锅底通31 小吃&主食&#xff1a; 捞派捞面一黄金小馒头一茴香小油条 红糖枇杷一小酥肉 DIY锅底推荐&#xff1a; 1.寿喜锅&#xff1a;海鲜味酱4勺陈醋1勺蚝油2勺盐适量白糖7勺 芹菜1勺 2.麻辣锅底…...

It’s All About Your Sketch: Democratising Sketch Control in Diffusion Models

翻译&#xff1a; 摘要 本文揭示了草图在扩散模型中的潜力&#xff0c;解决了生成式人工智能中直接草图控制的虚假承诺。我们重要的是使这个过程更加普及&#xff0c;让业余的草图也能生成精确的图像&#xff0c;真正实现“你画的就是你得到的”。一项初步研究强调了这一研究的…...

Java基础-组件及事件处理(下)

(创作不易&#xff0c;感谢有你&#xff0c;你的支持&#xff0c;就是我前行的最大动力&#xff0c;如果看完对你有帮助&#xff0c;请留下您的足迹&#xff09; 目录 面板组件 说明 常见组件 JScrollPane常用构造方法 JScrollPane设置面板滚动策略的方法 JScrollPane滚…...

npm list -g --depth=0(用来列出全局安装的所有 npm 软件包而不显示它们的依赖项)

您提供的命令 npm list -g --depth0 是在 Node Package Manager (npm) 的上下文中使用的&#xff0c;用来列出全局安装的所有 npm 软件包而不显示它们的依赖项。 这是它的运作方式&#xff1a; npm list -g --depth0-g: 指定列表应包括全局安装的软件包。--depth0: 限制树形结…...

深度学习:nn.Linear

nn.Linear 是 PyTorch 中的一个线性层&#xff08;全连接层&#xff09;&#xff0c;用于将输入张量从一个维度空间映射到另一个维度空间。具体来说&#xff0c;nn.Linear 执行以下操作&#xff1a; outputinputweightTbias 其中&#xff1a; input 是输入张量。 weight 是权重…...

大数据新视界 -- 大数据大厂之 Impala 性能提升:高级执行计划优化实战案例(下)(18/30)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

常用的Anaconda Prompt命令行指令

一、环境管理 查看已安装的环境 conda env list 或 conda info --envs&#xff1a;列出所有已安装的Anaconda环境。 创建新环境 conda create -n env_name pythonx.x&#xff1a;创建一个名为env_name的新环境&#xff0c;并指定Python版本为x.x。 激活环境 conda activate env…...

如何低成本、零代码开发、5分钟内打造一个企业AI智能客服?

传统客服因员工效率低、时段需求波动大、数据管理费时费力等管理难题&#xff0c;导致难以满足用户需求&#xff0c;无法深入挖掘客服数据价值&#xff0c;造成客源流失。而智能体搭建的“智能客服”能借助大模型和知识库知识&#xff0c;助力实现数字化运营&#xff0c;破解企…...

全网最全最新最细的MYSQL5.7下载安装图文教程

一、MYSQL两种安装包格式 MySQL安装文件分为两种&#xff0c;一种是msi格式的&#xff0c;一种是zip格式的。zip格式相当于绿色版&#xff0c;不需要安装&#xff0c;只需解压缩之后就可以使用了&#xff0c;但是要进行配置。msi格式是安装版。 二、MYSQL官网下载 1.官网地址…...

NoSQL数据库与关系型数据库的主要区别

NoSQL数据库与关系型数据库在多个方面存在显著区别&#xff0c;以下是对这些主要区别的详细描述&#xff1a; 一、数据存储模型 关系型数据库&#xff1a;使用表格形式存储数据&#xff0c;每个表格由行和列组成&#xff0c;行表示记录&#xff0c;列表示字段。数据之间的关系…...

ubuntu24.04安装matlab失败

又是摸鱼摆烂的一天&#xff0c;好难过&#xff5e; 官方教程&#xff1a;https://ww2.mathworks.cn/help/install/ug/install-products-with-internet-connection.html 问题描述&#xff1a;https://ww2.mathworks.cn/matlabcentral/answers/2158925-cannot-install-matlab-r2…...

Oracle 11g rac 集群节点的修复过程

Oracle 11g rac 集群节点的修复过程 目录 Oracle 11g rac 集群节点的修复过程一、问题的产生二、修复过程1、执行 roothas.pl 命令2、执行 root.sh 命令3、查看集群信息4、查看节点2的IP地址5、查看节点2的监听信息 一、问题的产生 用户的双节点 Oracle 11g rac 集群&#xff…...

c++:string(一)

文章目录 一string类1C语言中的字符串2C中的string二遍历1[ ]2迭代器3const迭代器4范围for5auto6总结三String的尾插1size和length2max_size,capacity和clear3访问接口4尾插字符和字符串5 append的重载三string的扩容问题&#xff08;1&#xff09;怎么扩容&#xff08;2&#…...

github和Visual Studio

1、代码下载和提交 GitHubDesktopSetup-x64.exe 使用很简单&#xff0c;自己稍微琢磨下就明白了。 2、Visual Studio 2022 2.1 安装组件及学习内容 Visual Studio 中的 CMake 项目 | Microsoft Learn 2.2 打开 CMakeLists.txt 文件 定位并选择 CMakeLists.txt 文件 …...

django框架-settings.py文件的配置说明

以下是一些Django的核心配置和其默认值. 下面列出了contrib应用提供的配置, 后面是核心配置的专题索引. 关于介绍性资料, 详见 settings指南. ABSOLUTE_URL_OVERRIDES 默认值: {} (空字典) 它是一个将 “app_label.model_name” 字符串映射到接受模型对象并返回其URL的函数的…...

【C语言】缺陷管理流程

请解释一下缺陷管理流程&#xff0c;包括缺陷的发现、跟踪、验证和关闭等环节。 缺陷管理流程是一种软件质量保证过程&#xff0c;其目的是识别、记录、分析、解决并最终消除程序中的错误或问题。以下是这个流程的主要步骤&#xff1a; 缺陷发现 (Bug Discovery): 这通常是通过…...

基于深度学习的猫狗识别

基于深度学习的猫狗识别是计算机视觉领域中的一个经典问题&#xff0c;它主要利用深度学习技术来训练和构建模型&#xff0c;以便能够自动区分和识别图像中的猫和狗。以下是一个基于深度学习的猫狗识别的简要介绍&#xff1a; 一、数据集准备 要实现猫狗识别&#xff0c;首先需…...

java组件安全

Solr 默认端口&#xff1a;8983 命令执行&#xff08;cve-2019-17558&#xff09; 影响版本&#xff1a;5.0.0-8.3.1 https://github.com/jas502n/solr_rce 远程命令执行&#xff08;cve-2019-0193&#xff09; 影响版本&#xff1a;<8.2.0 条件&#xff1a;DataImport…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

qt+vs Generated File下的moc_和ui_文件丢失导致 error LNK2001

qt 5.9.7 vs2013 qt add-in 2.3.2 起因是添加一个新的控件类&#xff0c;直接把源文件拖进VS的项目里&#xff0c;然后VS卡住十秒&#xff0c;然后编译就报一堆 error LNK2001 一看项目的Generated Files下的moc_和ui_文件丢失了一部分&#xff0c;导致编译的时候找不到了。因…...