当前位置: 首页 > news >正文

D3的竞品有哪些,D3的优势,D3和echarts的对比

在这里插入图片描述

D3 的竞品

  1. ECharts:

    • 简介: ECharts 是由百度公司开发的一款开源的 JavaScript 图表库,提供了丰富的图表类型和高度定制化的配置选项。
    • 特点: 易于使用,文档详尽,社区活跃,支持多种图表类型(如折线图、柱状图、饼图、散点图等),并且具有良好的性能优化。
  2. Chart.js:

    • 简介: Chart.js 是一个简单易用的 JavaScript 图表库,支持多种图表类型,如折线图、柱状图、饼图等。
    • 特点: 轻量级,易于集成,文档清晰,适合快速开发简单的图表应用。
  3. Highcharts:

    • 简介: Highcharts 是一款商业图表库,提供了丰富的图表类型和高级功能,支持交互式图表和动画效果。
    • 特点: 功能强大,图表美观,支持多种数据源和图表类型,适合企业级应用。
  4. FusionCharts:

    • 简介: FusionCharts 是一款商业图表库,提供了超过 90 种图表类型和 1000 多种地图。
    • 特点: 图表种类丰富,支持多语言,文档详尽,适合需要大量图表类型的应用。
  5. Plotly.js:

    • 简介: Plotly.js 是一个基于 WebGL 的高性能图表库,支持多种图表类型和交互式功能。
    • 特点: 性能优越,支持复杂的科学和工程图表,适合大数据可视化。

D3 的优势

  1. 高度定制化:

    • D3 提供了非常强大的底层 API,允许开发者完全控制图表的每一个细节,适合需要高度定制化图表的应用。
  2. 灵活性:

    • D3 不仅可以生成静态图表,还支持动态数据更新和交互式图表,非常适合复杂的动态数据可视化。
  3. 丰富的数据处理能力:

    • D3 内置了多种数据处理和计算方法,如数据聚合、排序、筛选等,使得数据准备和处理更加方便。
  4. 强大的社区支持:

    • D3 拥有庞大的开发者社区,提供了大量的示例和教程,遇到问题时容易找到解决方案。
  5. 跨平台支持:

    • D3 可以在多种平台上运行,包括浏览器、Node.js 等,适用于不同的开发环境。
  6. 广泛的生态系统:

    • D3 有大量的插件和扩展,可以扩展其功能,满足各种复杂需求。

D3 与 ECharts 的对比

  1. 学习曲线:

    • D3: 学习曲线较陡峭,需要一定的前端开发经验和对 SVG、CSS 等技术的理解。
    • ECharts: 学习曲线相对平缓,文档详尽,示例丰富,适合初学者快速上手。
  2. 定制化程度:

    • D3: 提供了极高的定制化程度,适合需要高度个性化图表的应用。
    • ECharts: 虽然也支持定制化,但相比 D3,其定制化程度略低,更适合常见的图表需求。
  3. 性能:

    • D3: 由于其高度灵活的特性,对于大数据集和复杂图表的性能可能不如专门优化的库。
    • ECharts: 在性能方面进行了优化,特别是在处理大数据集和复杂图表时表现良好。
  4. 图表类型:

    • D3: 支持几乎所有的图表类型,但需要开发者自行实现。
    • ECharts: 提供了丰富的图表类型和预设配置,开箱即用。
  5. 社区和支持:

    • D3: 拥有庞大的开发者社区,资源丰富,遇到问题容易找到解决方案。
    • ECharts: 社区也非常活跃,文档详尽,官方支持良好。
  6. 响应式设计:

    • D3: 需要开发者自己实现响应式设计。
    • ECharts: 内置了响应式设计,可以根据容器尺寸的变化自动调整图表大小和比例,适用于移动端和桌面端。
  7. 生态系统:

    • D3: 拥有庞大的生态系统,用户可以找到众多的插件和扩展,来增强和扩展其功能。
    • ECharts: 生态系统也在不断壮大,有许多成熟的组件和主题可供使用。

选择 D3 还是 ECharts 取决于具体的需求和项目背景。如果需要高度定制化和灵活的图表,且团队有较强的技术实力,D3 是一个很好的选择。如果项目时间紧张,需要快速开发常见图表,且对定制化要求不高,ECharts 则是一个更合适的选择。以下是简要总结:

  • D3: 高度定制化、灵活性强、数据处理能力强、社区支持好、学习曲线陡峭。
  • ECharts: 易于上手、内置图表类型丰富、性能优化好、响应式设计、文档详尽、社区活跃。

相关文章:

D3的竞品有哪些,D3的优势,D3和echarts的对比

D3 的竞品 ECharts: 简介: ECharts 是由百度公司开发的一款开源的 JavaScript 图表库,提供了丰富的图表类型和高度定制化的配置选项。特点: 易于使用,文档详尽,社区活跃,支持多种图表类型(如折线图、柱状图、饼图、散点…...

大厂计算机网络高频八股文面试题及参考答案(面试必问,持续更新)

目录 请简述 TCP 和 UDP 的区别? TCP 和 UDP 分别对应的常见应用层协议有哪些? UDP 的优缺点是什么?它适用于哪些场景? UDP 如何实现可靠传输? 请简述 HTTP 和 HTTPS 的区别? HTTP 协议的工作原理是什么? HTTP 状态码有哪些常见的类型及其含义? HTTP 哪些常用的…...

【bayes-Transformer-GRU多维时序预测】多变量输入模型。matlab代码,2023b及其以上

% 1. 数据准备 X_train 训练数据输入; Y_train 训练数据输出; X_test 测试数据输入; % 2. 模型构建 inputSize size(X_train, 2); numHiddenUnits 100; numResponses 1; layers [ … sequenceInputLayer(inputSize) biLSTMLayer(numHiddenUnits, ‘OutputMode’, ‘se…...

动手学深度学习69 BERT预训练

1. BERT 3亿参数 30亿个词 在输入和loss上有创新 两个句子拼起来放到encoder–句子对 cls-class分类 sep-seperate 分隔符 分开每个句子 告诉是哪个句子 两个句子给不同的向量 位置编码不用sin cos, 让网络自己学习 bert–通用任务 encoder 是双向的,…...

【2024软考架构案例题】你知道 Es 的几种分词器吗?Standard、Simple、WhiteSpace、Keyword 四种分词器你知道吗?

👉博主介绍: 博主从事应用安全和大数据领域,有8年研发经验,5年面试官经验,Java技术专家,WEB架构师,阿里云专家博主,华为云云享专家,51CTO 专家博主 ⛪️ 个人社区&#x…...

Elman 神经网络 MATLAB 函数详解

Elman 神经网络 MATLAB 函数详解 一、引言 Elman 神经网络是一种在时间序列分析和动态系统建模领域广泛应用的递归神经网络(RNN)。MATLAB 提供了一系列强大的函数来创建、训练和应用 Elman 神经网络,使得用户能够方便地利用其处理具有时间序…...

vue el-date-picker 日期选择器禁用失效问题

当value-format"yyyy-MM-dd"的格式不要改为"yyyyMMdd"&#xff0c;否则会导致日期选择器禁用失效问题&#xff0c;因为该组件默认的格式就是yyyy-MM-dd。 <el-col v-for"(item, index) in formData" :key"index" ><el-date-…...

搭建Python2和Python3虚拟环境

搭建Python3虚拟环境 1. 更新pip2. 搭建Python3虚拟环境第一步&#xff1a;安装python虚拟化工具第二步&#xff1a; 创建虚拟环境 3. 搭建Python2虚拟环境第一步&#xff1a;安装虚拟环境模块第二步&#xff1a;创建虚拟环境 4. workon命令管理虚拟机第一步&#xff1a;安装扩…...

【HarmonyOS NEXT】一次开发多端部署(以轮播图、Tab栏、列表为例,配合栅格布局与媒体查询,进行 UI 的一多开发)

关键词&#xff1a;一多、响应式、媒体查询、栅格布局、断点、UI 随着设备形态的逐渐增多&#xff0c;应用界面适配也面临着很大问题&#xff0c;在以往的安卓应用开发过程中&#xff0c;往往需要重新开发一套适用于大屏展示的应用&#xff0c;耗时又耗力&#xff0c;而鸿蒙提供…...

ubontu--cuDNN安装

1. 下载 cuDNN https://developer.nvidia.com/cudnn 2. 拷贝到服务器/home/<username>文件夹下 解压缩到当前文件夹&#xff1a; tar -xvf cudnn-linux-x86_64-9.5.1.17_cuda11-archive.tar.xz复制头文件和库文件到cuda安装目录/usr/local/cuda/ sudo cp /home/usern…...

高项 - 项目范围管理

个人总结&#xff0c;仅供参考&#xff0c;欢迎加好友一起讨论 博文更新参考时间点&#xff1a;2024-12 高项 - 章节与知识点汇总&#xff1a;点击跳转 文章目录 高项 - 项目范围管理范围管理ITO规划监控 管理基础产品范围与项目范围管理新实践 5大过程组与范围管理过程概述裁…...

如何获取PostgreSQL慢查询?从小白到高手的实战指南

数据库优化是性能调优的核心&#xff0c;而慢查询则是性能瓶颈的罪魁祸首。如何找到慢查询并优化它们&#xff0c;是每个开发者和DBA都必须掌握的技能。 今天&#xff0c;我们就来聊聊如何在PostgreSQL中快速获取慢查询日志&#xff0c;并结合不同场景进行分析优化。本文风格参…...

golang分布式缓存项目 Day4 一致性哈希

注&#xff1a;该项目原作者&#xff1a;https://geektutu.com/post/geecache-day1.html。本文旨在记录本人做该项目时的一些疑惑解答以及部分的测试样例以便于本人复习 为什么使用一致性哈希 我该访问谁 对于分布式缓存来说&#xff0c;当一个节点接收到请求&#xff0c;如…...

ARM 汇编指令

blr指令的基本概念和用途 在 ARM64 汇编中&#xff0c;blr是 “Branch with Link to Register” 的缩写。它是一种分支指令&#xff0c;主要用于跳转到一个由寄存器指定的地址&#xff0c;并将返回地址保存到链接寄存器&#xff08;Link Register&#xff0c;LR&#xff09;中。…...

打造个性化体验:在Axure中创建你的专属组件库

打造个性化体验&#xff1a;在Axure中创建你的专属组件库 在数字产品设计的浪潮中&#xff0c;效率和一致性是设计团队追求的两大圣杯。 随着项目的不断扩展&#xff0c;重复性的工作逐渐增多&#xff0c;设计师们开始寻找能够提高工作效率、保持设计一致性的解决方案。 而 …...

如何用WordPress和Shopify提升SEO表现?

选择合适的建站程序对于SEO优化非常重要。目前&#xff0c;WordPress和Shopify是两种备受推崇的建站平台&#xff0c;各有优势。 WordPress最大的优点是灵活性。它支持大量SEO插件&#xff0c;帮助你调整元标签、生成站点地图、优化内容结构等。这些功能让你能够轻松地提升网站…...

不泄密的安全远程控制软件需要哪些技术

在数字化浪潮中&#xff0c;远程控制软件已不再是简单的辅助工具&#xff0c;而是成为企业运作和日常工作中不可或缺的一部分。随着远程办公模式的广泛采纳&#xff0c;这些软件提供了一种既安全又高效的途径来管理和访问远端系统。无论是在家办公、技术支持还是远程教育&#…...

rust高级特征

文章目录 不安全的rust解引用裸指针裸指针与引用和智能指针的区别裸指针使用解引用运算符 *&#xff0c;这需要一个 unsafe 块调用不安全函数或方法在不安全的代码之上构建一个安全的抽象层 使用 extern 函数调用外部代码rust调用C语言函数rust接口被C语言程序调用 访问或修改可…...

STM32F407简单驱动步进电机(标准库)

配置 单片机型号&#xff1a;STM32F104ZGT6 步进电机&#xff1a;YK28HB40-01A 驱动器&#xff1a;YKD2204M-Plus 接线方式&#xff1a; pu&#xff1a;接对应的产生PWM的引脚&#xff0c;这里接PF9&#xff0c;对应TIM14_CH1通道&#xff01; pu-&#xff1a;接单片机的G…...

使用热冻结数据层生命周期优化在 Elastic Cloud 中存储日志的成本

作者&#xff1a;来自 Elastic Jonathan Simon 收集数据对于可观察性和安全性至关重要&#xff0c;而确保数据能够快速搜索且获得低延迟结果对于有效管理和保护应用程序和基础设施至关重要。但是&#xff0c;存储所有这些数据会产生持续的存储成本&#xff0c;这为节省成本创造…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...