当前位置: 首页 > news >正文

网络基础概念与应用:深入理解计算机网络

引言

计算机网络作为现代信息技术的重要支柱,是连接世界各地的重要纽带。它使得计算机能够相互通信、协同工作,从而极大地提高了我们的工作效率和生活质量。本篇文章将深入探讨计算机网络的基础概念,覆盖网络的分层模型、协议、数据传输原理以及 Socket 编程等内容。希望通过这篇文章,大家能够对计算机网络的核心概念有一个系统而深入的理解。

一、计算机网络背景与发展

网络的发展经历了从独立模式到局域网,再到广域网的过程。最早的计算机系统是独立运行的,彼此之间没有连接。随着人们需求的增加,计算机互联的概念逐渐形成,将多台计算机通过交换机和路由器连接在一起,形成了局域网(LAN),然后进一步演化出广域网(WAN)。局域网和广域网只是相对的概念,今天的互联网可以看作是一个巨大的广域网,也可以视为一个超大型的局域网。

计算机网络的发展也促使了网络技术和硬件设备的不断升级。从最初的电报通信到如今的光纤传输、无线通信,人们对信息传输的速度和可靠性提出了越来越高的要求。局域网通过交换机实现了高效的数据交换,而广域网则借助路由器实现跨越城市甚至国家的通信。今天的互联网不仅连接了计算机和智能设备,还连接了全球的人们,成为人类信息交流的主要平台之一。

二、初识网络协议

网络通信的核心是"协议",即通信双方的一种约定,就如同人类语言中的约定规则。在计算机之间,数据传输是通过光信号和电信号来实现的,需要有一种双方都能理解的规则来表示信息,比如用频率或强弱来表示二进制的 0 和 1。而这种规则的集合就是协议。

计算机网络协议的发展需要克服不同计算机厂商、不同操作系统以及网络硬件之间的不兼容性。为了让这些不同设备能够顺畅通信,就必须有一个共同遵守的标准,这便是网络协议。网络协议的制定往往需要国际标准组织、区域标准组织、甚至一些具有市场影响力的公司共同推动,比如 IEEE、ISO 和 IETF 等组织。

协议不仅仅是数据传输的约定,它还是计算机之间进行数据交换的基础。网络协议可以分为多个层次,每一层都有自己的功能,负责特定的任务。协议的分层结构使得网络通信更加模块化,任何一层的改进都不会影响到其他层次,从而提高了系统的可扩展性和维护性。

三、协议分层

网络协议的设计采用分层结构的方式进行,这是为了模块化设计和解耦合。OSI 七层模型是协议分层的经典设计,包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。这种分层设计的优点是可以将网络的功能分为各个独立的部分,使得不同系统可以通过遵守相同的层次化协议实现互联互通。

3.1 OSI 七层模型

OSI(开放系统互连)七层模型为网络通信提供了逻辑上的分层方案。每一层都有自己的功能和物理设备,例如物理层对应网络介质,数据链路层对应网卡和交换机,网络层对应路由器。OSI 模型的最大优点在于它将服务、接口和协议三个概念区分开来,理论清晰,并且有助于不同的网络系统实现兼容和互操作。

OSI 七层模型中的每一层都承担了特定的功能:

  1. 物理层:负责传输原始的比特流,通过网络介质进行物理信号的传递。

  2. 数据链路层:负责节点之间的数据帧传递,进行差错检测和纠正。

  3. 网络层:负责路由选择和数据包转发,通过 IP 地址来确定路径。

  4. 传输层:提供端到端的通信服务,确保数据的可靠传输,常用的协议有 TCP 和 UDP。

  5. 会话层:管理会话连接,负责建立、维护和终止通信会话。

  6. 表示层:负责数据的格式化和加密解密,确保不同系统之间的数据可以相互理解。

  7. 应用层:为用户提供直接的服务接口,如 HTTP、FTP 等。

3.2 TCP/IP 五层模型

在实际应用中,OSI 七层模型显得过于复杂,因此更常见的是 TCP/IP 协议族所采用的五层模型或四层模型。TCP/IP 模型包含物理层、数据链路层、网络层、传输层和应用层,较之于 OSI 模型更加简洁实用。TCP/IP 协议族是互联网通信的基础,它在每一层通过定义具体的协议来完成特定的功能,如 IP 协议负责地址管理和路由选择,TCP 协议负责可靠数据传输。

五层模型中,物理层和数据链路层负责网络的硬件连接和数据传输,网络层通过 IP 地址实现数据的路由,传输层通过 TCP 或 UDP 协议提供数据的可靠性和顺序控制,而应用层则为用户提供各种网络应用的接口。五层模型的简化使得其更加贴近实际应用,便于实现和理解。

四、网络传输的基本流程

网络数据传输的过程涉及多层协议之间的相互配合。以局域网为例,每台主机都有一个唯一的标识符,即 MAC 地址,用于识别连接在同一数据链路层中的节点。在以太网中,任何时刻只能有一台主机发送数据,否则会发生碰撞,因此需要进行碰撞检测和避免。通过 MAC 地址判断目标主机是否是数据的接收者,这是局域网通信的基础。

在广域网中,数据的传输依赖于路由器进行路径选择。数据包在传输过程中可能经过多个路由器,每一个路由器都负责将数据包转发到下一跳,最终将数据送达目的地。在这个过程中,网络层的 IP 协议起到了关键的作用,它根据 IP 地址来选择最佳的传输路径。

4.1 数据封装与解包

在数据从应用层发出时,需要通过各层协议进行封装,每层协议都会在数据前添加一个报头(Header),最后将数据包发送出去。传输到目标主机时,各层协议依次对数据进行解包,直到应用层数据被最终使用。这种封装与解包的过程使得各层协议可以独立实现,降低了系统的复杂性。

数据封装的过程从应用层开始,应用层将数据交给传输层,传输层在数据前添加自己的头部信息,然后将数据交给网络层,网络层再添加自己的头部信息。这样,经过层层封装,数据最终到达物理层,通过物理介质进行传输。接收方主机则按照相反的顺序逐层解包,最终将应用层的数据呈现给用户。

五、IP 地址和 MAC 地址

在网络传输中,IP 地址和 MAC 地址是两个重要的概念。IP 地址用于标识网络中不同主机的逻辑地址,而 MAC 地址则是网卡的物理地址。IP 地址在数据包的传输过程中始终保持不变,负责标识数据的最终目的地,而 MAC 地址会在每一段链路传输中不断变化,用于标识下一跳设备。通过这种方式,IP 地址和 MAC 地址共同协作,完成了数据在互联网中的传输。

IP 地址通常由四段数字组成,每段数字的取值范围是 0 到 255,例如 192.168.0.1。IP 地址可以分为公网 IP 和私有 IP,公网 IP 用于互联网上的通信,而私有 IP 只能在局域网中使用。为了能够高效管理 IP 地址,IPv4 地址被分为 A、B、C、D、E 五类,分别适用于不同规模的网络。

MAC 地址是由网卡制造商分配的物理地址,通常表示为 12 位的十六进制数,例如 08:00:27:03:fb:19。MAC 地址在局域网中起到了重要的作用,它确保了同一网络中设备之间的通信不发生冲突。在数据链路层,设备通过 MAC 地址判断是否接收来自其他设备的数据包。

六、Socket 编程基础

Socket 是进行网络编程的核心接口,用于实现不同主机之间的进程通信。Socket 是由 IP 地址和端口号组成的,它可以唯一标识网络中的一个通信端点。通过 Socket,开发者可以利用操作系统提供的系统调用,实现基于 TCP 或 UDP 协议的网络通信。

6.1 端口号与进程

端口号用于标识主机上的某个特定进程。操作系统通过端口号将接收到的数据分发给相应的应用程序。每个端口号是一个 16 位的整数,可以标识 0 到 65535 之间的端口,其中 0 到 1023 是知名端口号,通常用于系统服务,1024 到 65535 是用户可用的动态端口号。

通过 Socket 编程,应用程序可以在网络上与远程的其他程序进行数据交换。例如,Web 服务器通常会监听 80 端口,当浏览器向服务器发送请求时,服务器通过 80 端口接收请求并进行响应。类似地,FTP 服务器会监听 21 端口,用于文件传输服务。

6.2 Socket 编程 API

在进行 Socket 编程时,主要使用的 API 包括 socket()bind()listen()accept()connect() 等。这些 API 为开发者提供了创建连接、监听端口、接受请求等基础功能,从而实现不同主机之间的通信。通过这些接口,开发者可以灵活地使用 TCP 协议建立可靠连接,或使用 UDP 协议进行快速的数据传输。

Socket 编程示例

#include <iostream>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>int main() {int server_fd = socket(AF_INET, SOCK_STREAM, 0);if (server_fd == -1) {std::cerr << "Socket creation failed" << std::endl;return -1;}struct sockaddr_in address;address.sin_family = AF_INET;address.sin_addr.s_addr = INADDR_ANY;address.sin_port = htons(8080);if (bind(server_fd, (struct sockaddr*)&address, sizeof(address)) < 0) {std::cerr << "Bind failed" << std::endl;close(server_fd);return -1;}if (listen(server_fd, 3) < 0) {std::cerr << "Listen failed" << std::endl;close(server_fd);return -1;}std::cout << "Server is listening on port 8080" << std::endl;int client_socket = accept(server_fd, nullptr, nullptr);if (client_socket < 0) {std::cerr << "Accept failed" << std::endl;close(server_fd);return -1;}const char *message = "Hello from server";send(client_socket, message, strlen(message), 0);std::cout << "Message sent" << std::endl;close(client_socket);close(server_fd);return 0;
}

上面的代码展示了一个简单的服务器程序,它通过 Socket API 创建一个监听 8080 端口的服务器,并向连接的客户端发送一条消息。

七、TCP 与 UDP

TCP 和 UDP 是传输层的两个重要协议,各自具有不同的特性。

7.1 TCP 协议

TCP(传输控制协议)是一种面向连接的、可靠的传输协议。它通过三次握手建立连接,保证数据的有序和完整传输。TCP 协议适用于需要可靠传输的场景,如文件传输和远程登录。

TCP 协议的三次握手过程如下:

  1. 客户端发送 SYN 报文:客户端向服务器发送一个 SYN 报文,请求建立连接。

  2. 服务器回应 SYN-ACK 报文:服务器收到 SYN 报文后,向客户端发送一个 SYN-ACK 报文,表示同意连接请求。

  3. 客户端发送 ACK 报文:客户端收到 SYN-ACK 报文后,向服务器发送一个 ACK 报文,连接建立完成。

通过这种方式,TCP 确保了双方的连接是可靠的,并且可以进行后续的数据传输。在传输过程中,TCP 还通过超时重传和滑动窗口等机制确保数据不丢失且按序到达。

7.2 UDP 协议

UDP(用户数据报协议)是一种无连接的传输协议,不保证数据的有序性和可靠性,但它具有较低的延迟和较高的传输效率。因此,UDP 适用于实时通信的场景,如视频直播和在线游戏。

与 TCP 不同,UDP 在发送数据之前不需要建立连接,接收方也不需要发送确认信息。虽然这种方式无法保证数据的可靠性,但它极大地减少了传输的延迟,对于需要快速传输的应用场景来说是非常合适的。

八、网络字节序

在网络传输中,多字节数据的字节序问题需要特别注意。TCP/IP 协议规定网络字节序为大端字节序,即数据的高位字节存放在低地址处。这种统一的规定可以保证不同主机之间的数据正确传输。在实际编程中,可以使用 htonl()htons() 等函数进行主机字节序和网络字节序之间的转换,以确保数据的正确性。

例如,htonl() 函数用于将 32 位的主机字节序整数转换为网络字节序,而 ntohl() 则用于将网络字节序转换为主机字节序。这样可以保证不同系统之间的数据传输不会因为字节顺序不同而出错。

九、总结

本篇文章介绍了计算机网络的基础概念,包括网络分层模型、协议的作用与设计、数据封装与解包、Socket 编程基础以及传输层协议 TCP 和 UDP 的基本特性。通过这些内容,我们可以更好地理解计算机网络的工作原理,并能够在实际应用中进行网络编程。

网络的发展让我们的世界更加紧密地联系在一起,从局域网到广域网,再到今天的互联网,无数的协议和标准支撑起了这一复杂而强大的系统。希望这篇文章能为你揭开计算机网络的神秘面纱,激发你对网络编程和分布式系统的兴趣。如果你对某个具体部分有更多的疑问,欢迎在评论中提问,我们会一起探讨和学习。

相关文章:

网络基础概念与应用:深入理解计算机网络

引言 计算机网络作为现代信息技术的重要支柱&#xff0c;是连接世界各地的重要纽带。它使得计算机能够相互通信、协同工作&#xff0c;从而极大地提高了我们的工作效率和生活质量。本篇文章将深入探讨计算机网络的基础概念&#xff0c;覆盖网络的分层模型、协议、数据传输原理…...

<el-select> :remote-method用法

el-select :remote-method用法 说明代码实现单选多选 说明 在 Vue.js 中&#xff0c; 是 Element UI 库提供的一个下拉选择框组件。:remote-method 是 组件的一个属性&#xff0c;用于指定一个远程方法&#xff0c;该方法将在用户输入时被调用&#xff0c;以获取下拉列表的选项…...

CKA认证 | Day3 K8s管理应用生命周期(上)

第四章 应用程序生命周期管理&#xff08;上&#xff09; 1、在Kubernetes中部署应用流程 1.1 使用Deployment部署Java应用 在 Kubernetes 中&#xff0c;Deployment 是一种控制器&#xff0c;用于管理 Pod 的部署和更新。以下是使用 Deployment 部署 Java 应用的步骤&#x…...

JavaWeb——HTML、CSS

目录 1.概述 2.HTML a.HTML结构标签 b.图片标签 c.标题标签 d.水平线标签 e.布局标签 f.超链接标签 e.视频标签 f.音频标签 e.换行标签 f.段落标签 g.加粗标签 h.表格 1.声明表格 2.表行 3.普通表格 4.加粗表格 i.表单标签 1.声明表单 2. 表单 3.下拉列表…...

springboot如何获取控制层get和Post入参

一、在 Spring 配置中创建一个过滤器&#xff0c;将 HttpServletRequest 包装为 ContentCachingRequestWrapper import org.springframework.stereotype.Component; import org.springframework.web.filter.OncePerRequestFilter; import javax.servlet.FilterChain; import j…...

30 秒!用通义灵码画 SpaceX 星链发射流程图

不想读前人“骨灰级”代码&#xff0c; 不想当“牛马”程序员&#xff0c; 想像看图片一样快速读复杂代码和架构&#xff1f; 来了&#xff0c;灵码又加新 buff&#xff01;&#xff01; 通义灵码支持代码逻辑可视化&#xff0c; 可以把你的每段代码画成流程图。 你可以把…...

设计模式之组合模式(营销差异化人群发券,决策树引擎搭建场景)

前言&#xff1a; 往往很多大需求都是通过增删改查堆出来的&#xff0c;今天要一个需求if一下&#xff0c;明天加个内容else扩展一下。日积月累需求也就越来越大&#xff0c;扩展和维护的成本也就越来越高。往往大部分研发是不具备产品思维和整体业务需求导向的&#xff0c;总以…...

关于做完 C# 项目的问题总结

1. .Any()方法使用 可以与其他LINQ方法结合使用&#xff0c;以构建更复杂的查询。例如&#xff0c;你可以首先过滤集合&#xff0c;然后检查过滤后的集合是否包含任何元素&#xff1a; List<string> fruits new List<string> { "Apple", "Banana&q…...

CSS响应式布局实现1920屏幕1rem等于100px

代码解析与实现 设置根元素的 font-size 为 5.208333vw 假设你想让根元素的 font-size 基于视口宽度来动态调整。我们可以通过设置 font-size 为 5.208333vw 来让 1rem 相当于视口宽度的 5.208333%。 计算 5.208333vw: 当屏幕宽度为 1920px 时&#xff0c;5.208333vw 等于 5…...

根据当前浏览器版本,下载或更新驱动文件为对应的版本

以前通过ChromeDriverManager().install()的方式自动下载驱动的方式&#xff0c;现在行不通了&#xff0c;访问不通下载网址&#xff0c;会报错&#xff1a;requests.exceptions.ConnectionError: Could not reach host. Are you offline? 所以想着换一个下载地址和方式&…...

【轻量化】YOLOv10 更换骨干网络之 MobileNetv4 | 模块化加法!非 timm 包!

之前咱们在这个文章中讲了timm包的加法,不少同学反馈要模块化的加法,那么这篇就讲解下模块化的加法,值得注意的是,这样改加载不了mobilebnetv4官方开源的权重了~ 论文地址:https://arxiv.org/pdf/2404.10518 代码地址:https://github.com/tensorflow/models/blob/master…...

人体存在感应器设置时间开启感应人存在开灯,失效

环境&#xff1a; 领普人体存在感应器 问题描述&#xff1a; 人体存在感应器设置时间开启感应人存在开灯,失效&#xff0c;设置下午5点&#xff0c;如果有人在5点前一直在这个区域&#xff0c;这个时候到了5点&#xff0c;就触发不了感应自动打开灯光。 解决方案&#xff1a…...

2024年09月CCF-GESP编程能力等级认证Python编程二级真题解析

本文收录于专栏《Python等级认证CCF-GESP真题解析》,专栏总目录:点这里,订阅后可阅读专栏内所有文章。 一、单选题(每题 2 分,共 30 分) 第 1 题 据有关资料,山东大学于1972年研制成功DJL-1计算机,并于1973年投入运行,其综合性能居当时全国第三位。DJL-1计算机运算控…...

Vuex vs Pinia:新一代Vue状态管理方案对比

引言 随着Vue生态系统的不断发展&#xff0c;状态管理已经成为现代Vue应用程序中不可或缺的一部分。Vuex作为Vue官方的状态管理方案&#xff0c;一直是开发者的首选。然而&#xff0c;随着Pinia的出现&#xff0c;为Vue开发者带来了新的选择。本文将深入对比这两个状态管理方案…...

es查询报错:too_many_buckets_exception

故障排除 es查询报错&#xff1a;too_many_buckets_exception {"error":{"root_cause":[],"type":"search_phase_execution_exception","reason":"","phase":"fetch","grouped":…...

outlook邮箱关闭垃圾邮件——PowerAutomate自动化任务

微软邮箱反垃圾已经很强大了非常敏感&#xff0c;自家的域名的邮件都能给扔到垃圾邮箱里&#xff0c;但还是在本地增加了一层垃圾邮箱功能&#xff0c;然后垃圾邮箱并没有提示&#xff0c;导致错过很多通知&#xff0c;本身并没有提供关闭的功能&#xff0c;但微软有个Microsof…...

机器学习(七)——集成学习(个体与集成、Boosting、Bagging、随机森林RF、结合策略、多样性增强、多样性度量、Python源码)

目录 关于1 个体与集成2 Boosting3 Bagging与随机森林4 结合策略5 多样性X 案例代码X.1 分类任务-Adaboost-SVMX.1.1 源码X.1.2 数据集&#xff08;鸢尾花数据集&#xff09;X.1.3 模型效果 X.2 分类任务-随机森林RFX.2.1 源码X.2.2 数据集&#xff08;鸢尾花数据集&#xff09…...

vue跳转传参

path 跳转只能使用 query 传参 ,name 跳转都可以 params &#xff1a;获取来自动态路由的参数 query &#xff1a;获取来自 search 部分的参数...

初识Linux · 共享内存

目录 理解共享内存 Shared memmory code 理解共享内存 前文介绍的管道方式的通信&#xff0c;本文介绍的是进程通信的另外一种方式&#xff0c;即共享内存。但是这种通信方式的特点是只能本地通信&#xff0c;并且不像管道那样有保护机制&#xff0c;这里是没有的。 我们通…...

Illumina测序什么时候会测序到接头序列?

Storage-D: 一个支持实用及个性化 DNA 数据存储的用户友好型平台 iMeta主页&#xff1a;http://www.imeta.science 方法论文 ● 期刊&#xff1a;iMeta&#xff08;IF 23.7&#xff09; ● 原文链接DOI: https://doi.org/10.1002/imt2.168 ● 2024年1月21日&#xff0c;中国…...

Element表格show-overflow-tooltip属性

表格默认情况下若内容过多会折行显示&#xff0c;若需要单行显示可以使用show-overflow-tooltip属性&#xff0c;它接受一个Boolean&#xff0c;为true时多余的内容会在 hover 时以 tooltip 的形式显示出来。 <el-table v-loading"loading" :data"list"…...

蓝桥杯竞赛单片机组备赛【经验帖】

本人获奖情况说明 笔者本人曾参加过两次蓝桥杯电子赛&#xff0c;在第十二届蓝桥杯大赛单片机设计与开发组获得省级一等奖和国家级二等奖&#xff0c;在第十五届嵌入式设计开发组获得省级二等奖。如果跟着本帖的流程备赛&#xff0c;只要认真勤奋&#xff0c;拿个省二绝对没问…...

解密复杂系统:理论、模型与案例(3)

第五章&#xff1a;复杂系统的应用案例 复杂系统理论在多个领域中展现出其独特的分析能力和广泛的应用前景。本章将详细探讨复杂系统在生态系统、经济与金融系统、社会网络以及生物系统中的具体应用&#xff0c;通过丰富的案例分析&#xff0c;揭示复杂系统理论在实际问题解决…...

<项目代码>YOLOv8 番茄识别<目标检测>

YOLOv8是一种单阶段&#xff08;one-stage&#xff09;检测算法&#xff0c;它将目标检测问题转化为一个回归问题&#xff0c;能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法&#xff08;如Faster R-CNN&#xff09;&#xff0c;YOLOv8具有更高的…...

docker安装到D盘

双击安装docker默认是安装在c盘&#xff0c;并且安装时我们没法选择位置&#xff0c;如果我们要安装在其他盘可以通过命令行安装 1、下载docker https://docs.docker.com/desktop/setup/install/windows-install/ Docker Desktop 可以使用 WSL 和 Hyper-V任意一种架构&#xf…...

【Java语言】String类

在C语言中字符串用字符可以表示&#xff0c;可在Java中有单独的类来表示字符串&#xff08;就是String&#xff09;&#xff0c;现在我来介绍介绍String类。 字符串构造 一般字符串都是直接赋值构造的&#xff0c;像这样&#xff1a; 还可以这样构造&#xff1a; 图更能直观的…...

【go从零单排】Directories、Temporary Files and Directories目录和临时目录、临时文件

&#x1f308;Don’t worry , just coding! 内耗与overthinking只会削弱你的精力&#xff0c;虚度你的光阴&#xff0c;每天迈出一小步&#xff0c;回头时发现已经走了很远。 &#x1f4d7;概念 在 Go 语言中&#xff0c;path/filepath 包提供了一组用于处理文件路径的函数&am…...

Diff 算法的误判

起源&#xff1a; for循环的:key的值使用index绑定&#xff0c;当循环列表条目变化更新&#xff0c;导致虚拟 DOM Diff 算法认为原有项被替换&#xff0c;而不是更新。 // vue2写法 错误例子 <template><div><button click"addItem">添加项目<…...

odoo 17 后端路由接口认证自定义

odoo 17 后端路由接口认证自定义 在接口中, 我们都知道有3中常用的认证方式 user 用户级认证public 访问时赋予公共用户none 不做任何用户级处理 一般不做数据库重要数据校验, 仅做访问处理 以上是源码提供的三种方式 接下来我们自定义一个认证方式 首先找到的这认证是在…...

租赁回收系统小程序

1.需求分析&#xff1a;首先&#xff0c;需要明确系统的功能和特点。这包括确定租赁回收的物品类型、用户群体、业务流程等。通过需求分析&#xff0c;可以确保系统能够满足市场和用户的需求。 2.系统设计&#xff1a;在需求分析的基础上&#xff0c;进行系统的整体设计。这包…...