【机器学习】数学知识:欧式距离(Euclidean Distance)和曼哈顿距离(Manhattan Distance)
欧式距离和曼哈顿距离是两种常用的距离度量方法,用于衡量两点之间的相似性或差异性。它们在几何分析、数据挖掘、机器学习等领域有广泛应用。
1. 欧式距离
概念
欧式距离(Euclidean Distance)是最常见的直线距离度量方法,源于欧几里得几何学。它表示两点之间的直线距离,类似于二维或三维空间中两点间的最短路径。
公式
在 n-维空间中,给定两点 和
,欧式距离公式为:
欧式距离的发现
欧式距离的起源可以追溯到古希腊数学家欧几里得(Euclid,约公元前300年),其在著作《几何原本》(Elements)中系统化了几何学的基础知识。
欧式几何定义了空间中点与点之间的最短距离,即“直线距离”,由此衍生出欧式距离的概念。
-
基本原理:勾股定理 欧式距离公式源于勾股定理:在直角三角形中,斜边的平方等于两直角边的平方和。
推广到 n-维空间,给定两点
和
,距离公式扩展为:
-
主要特点 欧式距离定义了连续空间中两点之间的“几何距离”,强调的是全局最短路径。这一概念与自然界中的最短路径问题高度吻合。
经典应用案例
- 聚类分析:例如 K-Means 聚类算法使用欧式距离衡量样本点与聚类中心的距离。
- 图像处理:计算图像像素值的差异。
2. 曼哈顿距离
概念
曼哈顿距离(Manhattan Distance)也称为“城市街区距离”或“L1 距离”,表示两点之间的路径长度,假设只能沿水平和垂直方向移动,类似于网格状街道上的步行距离。
公式
在 n-维空间中,给定两点 和
,曼哈顿距离公式为:
曼哈顿距离的发现
曼哈顿距离的概念起源于网格化城市模型的研究,最初应用于街道规划和城市交通问题。名字来源于美国纽约的曼哈顿区,该区域的街道呈现规则的网格状布局。
-
基本思想 在曼哈顿街道中,车辆或行人通常沿着水平和垂直方向移动,因此实际距离是路径上水平方向和竖直方向的距离之和,而非欧式距离的直线距离。
-
数学化描述 对于二维空间中两点
和
,其曼哈顿距离定义为:
推广到 n-维空间,计算每一维的绝对差值并累加即可,公式为:
-
主要特点 曼哈顿距离描述了离散空间或网格系统中最短路径,适合用于模拟实际城市中路径优化和步行距离等问题。
经典应用案例
- 推荐系统:衡量用户偏好之间的距离。
- 路径规划:模拟城市中的最短步行距离。
3. Python 实现及图例
以下代码对欧式距离和曼哈顿距离进行计算,并通过图形化展示两种距离的差异。
代码示例
import numpy as np
import matplotlib.pyplot as plt# 定义两点
P = np.array([1, 2])
Q = np.array([4, 6])# 计算欧式距离
euclidean_distance = np.sqrt(np.sum((P - Q) ** 2))# 计算曼哈顿距离
manhattan_distance = np.sum(np.abs(P - Q))# 打印结果
print(f"欧式距离: {euclidean_distance}")
print(f"曼哈顿距离: {manhattan_distance}")# 图示
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.figure(figsize=(8, 6))
plt.scatter(P[0], P[1], color='blue', label='Point P (1, 2)')
plt.scatter(Q[0], Q[1], color='red', label='Point Q (4, 6)')
plt.plot([P[0], Q[0]], [P[1], Q[1]], color='green', linestyle='--', label='Euclidean Path')# 曼哈顿路径
plt.plot([P[0], Q[0]], [P[1], P[1]], color='orange', linestyle='-', label='Manhattan Path')
plt.plot([Q[0], Q[0]], [P[1], Q[1]], color='orange', linestyle='-')# 坐标轴与图例
plt.axhline(0, color='black', linewidth=0.5)
plt.axvline(0, color='black', linewidth=0.5)
plt.xlim(0, 7)
plt.ylim(0, 7)
plt.grid()
plt.title("欧式距离与曼哈顿距离")
plt.legend()
plt.show()
欧式距离: 5.0
曼哈顿距离: 7
运行结果
- 欧式距离:从 P 到 Q 的最短直线路径,图中为绿色虚线。
- 曼哈顿距离:从 P 到 Q 沿水平和垂直移动的路径,图中为橙色折线。
4. 比较与总结
特性 | 欧式距离 | 曼哈顿距离 |
---|---|---|
移动方式 | 直线 | 垂直+水平 |
应用场景 | 连续数据、物理距离 | 离散数据、网格路径 |
计算复杂度 | 二次方和开平方计算 | 绝对值和累加 |
优点 | 更适合度量几何意义 | 简单计算,鲁棒性强 |
欧式距离更适合分析连续空间中的距离,而曼哈顿距离更适合离散或网格化的场景。根据应用需求选择合适的度量方式尤为重要。
相关文章:

【机器学习】数学知识:欧式距离(Euclidean Distance)和曼哈顿距离(Manhattan Distance)
欧式距离和曼哈顿距离是两种常用的距离度量方法,用于衡量两点之间的相似性或差异性。它们在几何分析、数据挖掘、机器学习等领域有广泛应用。 1. 欧式距离 概念 欧式距离(Euclidean Distance)是最常见的直线距离度量方法,源于欧…...

Redis 概 述 和 安 装
安 装 r e d i s: 1. 下 载 r e dis h t t p s : / / d o w n l o a d . r e d i s . i o / r e l e a s e s / 2. 将 redis 安装包拷贝到 /opt/ 目录 3. 解压 tar -zvxf redis-6.2.1.tar.gz 4. 安装gcc yum install gcc 5. 进入目录 cd redis-6.2.1 6. 编译 make …...
数据仓库面试题集离线实时
一、Flink面试问题集 1、flinkkafka 如何保证精准一次 配置两阶段提交 2、Flink提交方式, 使用pre-job还是yarn-session模式,以及Application模式,好处? Flink提交模式模式对比 3、Flink UV统计实现 set布隆过滤器redis 有误…...

Spring Boot框架:电商系统的技术革新
4 系统设计 网上商城系统的设计方案比如功能框架的设计,比如数据库的设计的好坏也就决定了该系统在开发层面是否高效,以及在系统维护层面是否容易维护和升级,因为在系统实现阶段是需要考虑用户的所有需求,要是在设计阶段没有经过全…...

一键抠图:免费安全的在线图片去除背景工具
利用前端技术,轻松去除图片背景 得益于Webassembly技术的快速发展,前端可以实现的功能越来越多。本文将介绍一款基于briaai的 RMBG-1.4型号的 预训练模型实现的在线图片去除背景(抠图)工具。地址:https://www.potatotools.top/toolsEntrance…...
vue项目PC端和移动端实现在线预览pptx文件
通过PPTXjs插件,实现PPTX文件在线预览,需下载PPTXjs,将其引入HTML页面,并编写相应的HTML和JS代码,如果是移动端还需调整div大小,这是一种便捷的前端PPTX转HTML技术,适合网页展示使用 PPTX在线预览,使用jquery的插件《PPTXjs》,纯前端实现pptx转html进行…...

uniapp适配暗黑模式配置plus.nativeUI.setUIStyle适配DarkMode配置
uniapp适配暗黑模式配置 目录 uniapp适配暗黑模式配置setUIStyleDarkMode 适配app-plus manifest.json配置theme.json配置pages.json配置页面切换代码实现同步手机暗黑配置额外适配 参考官方文档:https://uniapp.dcloud.net.cn/tutorial/darkmode.html 主要用到api…...

EXCEL 或 WPS 列下划线转驼峰
使用场景: 需要将下划线转驼峰,直接在excel或wps中第一行使用公式,然后快速刷整个列格式即可。全列工下划线转为格式,使用效果如下: 操作步骤: 第一步:在需要显示驼峰的一列,复制以…...

走进Linux的历史发展史
目录 前言 Linux的发展史 UNIX发展的历史 Linux发展历史 开源 企业应用现状 Linux在服务器领域的发展 桌面领域 移动嵌入式领域 云计算/大数据领域 发行版 编辑 Linux环境搭建方式 前言 本节博客内容较水,主要介绍Linux的发展历史和其相关的学习内容&a…...

学习yum工具,进行安装软件
目录 1.Linux 软件包管理器 yum 什么是软件包 2.Linux下安装软件的方案 3.Linux软件生态 Linux下载软件的过程(Ubuntu、Centos、other) 操作系统的好坏评估--- ⽣态问题 为什么会有⼈免费特定社区提供软件,还发布?还提供云服…...
union介绍及使用
union格式 在C中,union是一种特殊的数据类型,它允许在相同的内存位置存储不同的数据类型,但在任意时刻只能使用一个成员。以下是union类型的基本格式说明: union UnionName {memberType1 memberName1;memberType2 memberName2;m…...
安全,服务器证书和SSL连接
业务报错: javax.net.ssl.SSLPeerUnverifiedException: Certificate for <10.5.20.137> doesn’t match any of the subject alternative names: [*.dt.zte.com.cn] at org.apache.http.conn.ssl.SSLConnectionSocketFactory.verifyHostname(SSLConnectionSoc…...

Java结合ElasticSearch根据查询关键字,高亮显示全文数据。
由于es高亮显示机制的问题。当全文内容过多,且搜索中标又少时,就会出现高亮结果无法覆盖全文。因此需要根据需求手动替换。 1.根据es的ik分词器获取搜索词的分词结果。 es部分: //中文分词解析 post /_analyze {"analyzer":"…...

Design Compiler:Topographical Workshop Lab2
相关阅读 Design Compilerhttps://blog.csdn.net/weixin_45791458/category_12738116.html?spm1001.2014.3001.5482 本文是对Synopsys Design Compiler Topographical/Graphical Workshop Lab Guide中Lab2的翻译,Lab文件可以从以下链接获取。 Synopsys Design Co…...

【C语言】连接陷阱探秘(1):声明与定义
目录 一、声明与定义的混淆 1.1. 声明(Declaration) 1.2. 定义(Definition) 1.3. 避免混淆的方法 1.4. 示例 二、声明与定义不匹配 2.1. 常见的不匹配情况 2.2. 解决方法 三、外部变量与静态变量的命名冲突 3.1. 外部变量命名冲突 3.2. 静态变量命名冲突 四、缺…...

ChatGPT学术专用版,一键润色纠错+中英互译+批量翻译PDF
ChatGPT academic项目是由中科院团队基于ChatGPT专属定制。论文润色、语法检查、中英互译、代码解释等可一键搞定,堪称科研神器。 功能介绍 我们以3.5版本为例,ChatGPT学术版总共分为五个区域:输入控制区、输出对话区、基础功能区、函数插件…...
python isinstance(True, int)
今天的bug 是布尔类型给的。 >>> a True >>> isinstance(a, int) True>>> a True >>> isinstance(a, bool) TruePython中的布尔类型(bool)实际上是整数类型(int)的一个子类,…...

1.5寸**进口 128128带灰阶oled屏 spi串口 老王电子diy 设备 OLED 2024/11/15 arduino
名:1.5寸**进口 128128带灰阶oled屏 协:spi串口 铺:老王电子diy 设备: OLED 时间:2024/11/15 IDE: arduino 兜兜转转还是打通了,他的接口 用的i2c 标志 夭寿咯 MOSI(Master Out Slave In):主机输出,从机输入。MISOÿ…...

【EasyExcel】复杂导出操作-自定义颜色样式等(版本3.1.x)
文章目录 前言一、自定义拦截器二、自定义操作1.自定义颜色2.合并单元格 三、复杂操作示例1.实体(使用了注解式样式):2.自定义拦截器3.代码4.最终效果 前言 本文简单介绍阿里的EasyExcel的复杂导出操作,包括自定义样式,根据数据合并单元格等。…...

机器学习 ---线性回归
目录 摘要: 一、简单线性回归与多元线性回归 1、简单线性回归 2、多元线性回归 3、残差 二、线性回归的正规方程解 1、线性回归训练流程 2、线性回归的正规方程解 (1)适用场景 (2)正规方程解的公式 三、衡量…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...