当前位置: 首页 > news >正文

【C语言指南】C语言内存管理 深度解析

           💓 博客主页:倔强的石头的CSDN主页 

           📝Gitee主页:倔强的石头的gitee主页

            ⏩ 文章专栏:《C语言指南》

                                  期待您的关注

 

47f09392526c71b5885ec838a3ea7ffe.gif

引言

C语言是一种强大而灵活的编程语言,为程序员提供了对内存的直接控制能力。这种对内存的控制使得C语言非常灵活,但也带来了更大的责任

在C语言中,程序员需要负责内存的分配和释放,否则可能会导致内存泄漏和其他内存管理问题。

本文将深入探讨C语言的内存管理机制,包括内存分配、内存释放、内存泄漏等问题。

 

目录

引言

一、 内存区域划分

🍃内核空间

🍃栈:

🍃内存映射段:

🍃堆:

🍃数据段:

🍃代码段:

二、内存分配方式

1. 静态分配

(1) 全局变量和静态变量

(2) 局部变量

2. 动态分配

三、动态内存管理

🍃动态内存分配

1. malloc

2. calloc

3. realloc

注意事项

🍃内存释放与内存泄漏

内存释放

内存泄漏

结束语


 

一、 内存区域划分

fa6b88d2b16e49ddb3080a13b9d89941.png

🍃内核空间

  • 高地址空间主要用于存储操作系统内核的代码和数据。这个区域由操作系统内核独占,用户程序通常无法直接访问。
  • 内核空间存储了操作系统内核的代码、数据结构、进程管理信息、内存管理信息等重要数据。这些数据是操作系统运行所必需的,因此必须存储在安全且受保护的内核空间中。

 

🍃栈:

  • 在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时 这些存储单元⾃动被释放。
  • 栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内 存容量有限。
  • 栈区主要存放运行函数而且分配的局部变量、函数参数、返回数据、返回地址等

 

🍃内存映射段:

  • 内存映射段通常与操作系统的内存管理功能紧密相关,用于将物理内存地址空间映射到进程的虚拟地址空间
  • 这种映射机制允许程序以一种抽象和统一的方式访问内存,而不必关心底层的物理内存布局。

 

🍃堆:

  • 堆是用于动态分配内存的区域,程序员可以通过malloc、calloc等函数手动申请一块指定大小的内存空间,并在使用完毕后手动释放该内存空间。
  • ⼀般由程序员分配释放,若程序员不释放,程序结束时可能由操作系统回收

 

🍃数据段:

  • 数据段是一个专门用于存储全局变量和静态变量的内存区域
  • 这个区域在程序加载到内存时就已经分配好,并且在程序的整个生命周期内都有效。
  • 数据段的主要目的是为程序提供持久的、全局范围的数据存储。

 

🍃代码段:

  • 代码段主要用于存储程序的机器指令,这些指令是程序执行的基础。
  • 这些指令由编译器从源代码编译而成,并在程序加载到内存时由操作系统加载到代码段。这些指令在程序执行期间是只读的,以防止程序意外或恶意地修改自己的指令。
  • 其次,常量在内存中的存储位置取决于常量的类型和编译器的具体实现,可能会存储在只读数据段或其他数据段中。在编译时,一些数值常量可能会被直接嵌入到指令中

 

二、内存分配方式

在C语言中,内存分配主要有两种方式:静态分配和动态分配。下面详细介绍这两种方式及其代码示例。

1. 静态分配

静态分配是指在编译时确定内存分配的方式。静态分配的内存通常存在于数据段和栈区。

(1) 全局变量和静态变量

全局变量和静态变量在程序启动时分配内存,并在整个程序运行期间一直存在。

#include <stdio.h>// 全局变量
int globalVar = 10;void function() {// 静态变量static int staticVar = 20;printf("globalVar: %d, staticVar: %d\n", globalVar, staticVar);
}int main() {function();function();return 0;
}

 

(2) 局部变量

局部变量在函数调用时分配内存,在函数返回时释放内存。

#include <stdio.h>void function() {// 局部变量int localVar = 30;printf("localVar: %d\n", localVar);
}int main() {function();function();return 0;
}

2. 动态分配

动态分配则是在程序运行时根据需要进行的,通过标准库函数如malloccallocreallocfree来管理。动态分配的内存通常存在于堆区。

动态分配的内容比较多,单独放在下面一个小节讲解:

 

三、动态内存管理

🍃动态内存分配

在C语言中,有三个主要的动态内存分配函数:malloccallocrealloc。这些函数用于在程序运行时动态地分配和管理内存。下面详细介绍这三个函数的功能、用法以及一些注意事项。

 

1. malloc

malloc 函数用于在堆上分配指定大小的内存块,并返回指向该内存块的指针。

如果分配失败,malloc 返回 NULL

函数原型

void *malloc(size_t size);
  • size_t 是一个无符号整数类型,表示要分配的内存量(以字节为单位)。
  • 返回值是一个 void * 类型的指针,需要根据实际需求转换成相应的指针类型。

 

示例代码

#include <stdio.h>
#include <stdlib.h>int main() {int *p = (int *)malloc(10 * sizeof(int));  // 分配10个整数的内存if (p == NULL) {fprintf(stderr, "Memory allocation failed\n");return 1;}for (int i = 0; i < 10; i++) {p[i] = i * 10;}printf("Array: ");for (int i = 0; i < 10; i++) {printf("%d ", p[i]);}printf("\n");free(p);  // 释放内存return 0;
}

 

2. calloc

calloc 函数用于在堆上分配多个连续的内存块,并将这些内存块初始化为零。它返回指向分配的内存块的指针。如果分配失败,calloc 返回 NULL

函数原型

void *calloc(size_t num, size_t size);
  • num 表示要分配的内存块的数量。
  • size 表示每个内存块的大小(以字节为单位)。
  • 返回值是一个 void * 类型的指针,需要根据实际需求转换成相应的指针类型。

要注意calloc的参数与malloc有所不同

  • malloc只有一个参数,表示 要申请的空间的字节数
  • calloc有两个参数,将申请的空间看成多个内存块,第二个参数表示内存块的大小,第一个参数表示内存块的数量

示例代码

#include <stdio.h>
#include <stdlib.h>int main() {int *arr = (int *)calloc(5, sizeof(int));  // 分配5个整数的内存并初始化为零if (arr == NULL) {fprintf(stderr, "Memory allocation failed\n");return 1;}for (int i = 0; i < 5; i++) {arr[i] = i * 10;}printf("Array: ");for (int i = 0; i < 5; i++) {printf("%d ", arr[i]);}printf("\n");free(arr);  // 释放内存return 0;
}

 

3. realloc

realloc 函数用于改变之前分配的内存块的大小。如果新的大小大于原大小,新增加的部分不会被初始化;如果新的大小小于原大小,超出部分的内存将被释放。如果分配失败,realloc 返回 NULL,并且原内存块保持不变。

函数原型

void *realloc(void *ptr, size_t new_size);
  • ptr 是之前通过 malloccalloc 或 realloc 分配的内存块的指针。
  • new_size 是新的内存块的大小(以字节为单位)。
  • 返回值是一个 void * 类型的指针,需要根据实际需求转换成相应的指针类型。

 

注意:

 realloc申请内存分配是有可能失败的,不要用原指针直接接收realloc的返回结果,否则有可能丢失原指针的数据

应当先用临时指针接收,判断不为NULL之后,再将原指针指向分配的地址

 

示例代码

#include <stdio.h>
#include <stdlib.h>int main() {int *arr = (int *)malloc(5 * sizeof(int));  // 分配5个整数的内存if (arr == NULL) {fprintf(stderr, "Memory allocation failed\n");return 1;}for (int i = 0; i < 5; i++) {arr[i] = i * 10;}printf("Initial array: ");for (int i = 0; i < 5; i++) {printf("%d ", arr[i]);}printf("\n");// 重新分配内存,扩展数组到10个元素int* tmp = (int *)realloc(arr, 10 * sizeof(int));if (tmp == NULL) {fprintf(stderr, "Memory reallocation failed\n");return 1;}arr=tmp;for (int i = 5; i < 10; i++) {arr[i] = i * 10;}printf("Extended array: ");for (int i = 0; i < 10; i++) {printf("%d ", arr[i]);}printf("\n");free(arr);  // 释放内存return 0;
}

 

注意事项

  1. 检查返回值:始终检查 malloccalloc 和 realloc 的返回值是否为 NULL,以确保内存分配成功。
  2. 内存释放:使用 free 函数释放不再使用的内存,避免内存泄漏。
  3. 指针类型转换:虽然 malloccalloc 和 realloc 返回 void * 类型的指针,但在某些编译器中,显式类型转换可以提高代码的可移植性。
  4. 初始化malloc 不初始化分配的内存,而 calloc 会将内存初始化为零。

 

🍃内存释放与内存泄漏

内存释放

内存释放是指在不再需要动态分配的内存时,将其归还给系统,以便其他部分的程序可以重用这些内存。在C语言中,内存释放是通过 free 函数完成的。

free 函数

free 函数用于释放之前通过 malloccallocrealloc 分配的内存。

函数原型

void free(void *ptr);
  • ptr 是之前通过 malloccalloc 或 realloc 分配的内存块的指针。
  • 如果 ptr 是 NULLfree 函数什么也不做,这有助于避免空指针解引用的错误。

 

如果 free 的参数不是通过这些函数分配的内存,或者是一个无效的指针,将会导致未定义行为。未定义行为意味着程序的行为不可预测,可能包括但不限于以下几种情况:

  1. 程序崩溃:最常见的结果之一是程序崩溃。操作系统可能会检测到非法的内存操作并终止程序。
  2. 内存损坏:释放非动态分配的内存可能会导致内存损坏,影响其他部分的程序。
  3. 数据损坏:释放非动态分配的内存可能会导致数据损坏,使得程序中的其他数据变得不可靠。
  4. 程序继续运行但行为异常:程序可能会继续运行,但表现出异常的行为,难以调试。

 

 正确使用free函数的示例代码,在上面动态内存分配部分以及给出示例。

下面是一些示例代码,展示了使用 free 释放非动态分配的内存时可能出现的问题。

示例1:释放栈上的内存

#include <stdio.h>
#include <stdlib.h>int main() {int local_var = 10;free(&local_var);  // 错误:尝试释放栈上的内存return 0;
}

在这个例子中,local_var 是一个局部变量,存储在栈上。调用 free(&local_var) 试图释放栈上的内存,这会导致未定义行为,可能会使程序崩溃或表现异常。

 

示例2:释放静态分配的内存

#include <stdio.h>
#include <stdlib.h>int main() {int global_var = 20;free(&global_var);  // 错误:尝试释放静态分配的内存return 0;
}

在这个例子中,global_var 是一个全局变量,存储在全局/静态数据区。调用 free(&global_var) 试图释放静态分配的内存,同样会导致未定义行为。

 

示例3:释放已释放的内存

#include <stdio.h>
#include <stdlib.h>int main() {int *p = (int *)malloc(10 * sizeof(int));if (p == NULL) {fprintf(stderr, "Memory allocation failed\n");return 1;}free(p);  // 第一次释放free(p);  // 错误:尝试释放已释放的内存return 0;
}

在这个例子中,p 指向的内存已经被释放了一次,再次调用 free(p) 试图释放已释放的内存,这会导致未定义行为。


 

内存泄漏

内存泄漏是指程序在运行过程中未能正确释放已经分配的内存,导致这些内存无法被再次使用。内存泄漏会逐渐消耗系统的可用内存,最终可能导致程序崩溃或系统性能下降。

常见的内存泄漏原因

  1. 忘记释放内存:这是最常见的内存泄漏原因。程序员在使用完动态分配的内存后忘记调用 free 函数。
  2. 重复释放内存:多次调用 free 函数释放同一块内存会导致未定义行为,可能会引发程序崩溃。
  3. 指针覆盖:在未释放内存的情况下,重新赋值指针,导致原来的内存地址丢失,无法再释放。
  4. 递归分配:在递归函数中分配内存,但没有正确的释放机制,导致内存泄漏。

示例代码:内存泄漏

#include <stdio.h>
#include <stdlib.h>void leaky_function() {int *p = (int *)malloc(10 * sizeof(int));  // 分配内存if (p == NULL) {fprintf(stderr, "Memory allocation failed\n");return;}for (int i = 0; i < 10; i++) {p[i] = i * 10;}// 忘记释放内存// free(p);
}int main() {for (int i = 0; i < 1000; i++) {leaky_function();  // 每次调用都会导致10个整数的内存泄漏}return 0;
}

 

 如何避免内存泄漏?

1. 及时释放内存

每次动态分配内存后,确保在不再需要该内存时及时释放。这是避免内存泄漏的最基本也是最重要的原则。

 

2. 使用指针管理技巧

2.1 设置指针为 NULL

释放内存后,将指针设置为 NULL,可以避免重复释放和悬空指针问题。

#include <stdio.h>
#include <stdlib.h>int main() {int *p = (int *)malloc(10 * sizeof(int));if (p == NULL) {fprintf(stderr, "Memory allocation failed\n");return 1;}// 使用分配的内存for (int i = 0; i < 10; i++) {p[i] = i * 10;}// 释放内存free(p);p = NULL;  // 将指针设置为 NULLreturn 0;
}

 

2.2 使用局部变量管理指针

在函数内部使用局部变量管理指针,可以确保在函数退出时释放内存。

#include <stdio.h>
#include <stdlib.h>void process_data() {int *p = (int *)malloc(10 * sizeof(int));if (p == NULL) {fprintf(stderr, "Memory allocation failed\n");return;}// 使用分配的内存for (int i = 0; i < 10; i++) {p[i] = i * 10;}// 释放内存free(p);
}int main() {process_data();return 0;
}

3. 代码审查和测试

定期进行代码审查,检查是否有遗漏的 free 调用。编写单元测试,确保每个分配的内存都被正确释放。

4. 使用内存检测工具

使用内存检测工具,如 Valgrind,可以帮助检测内存泄漏和非法内存访问等问题。

安装Valgrind

在Linux系统上,可以使用以下命令安装Valgrind:

sudo apt-get install valgrind

使用Valgrind

编译你的程序(假设程序文件名为 example.c):

gcc -g -o example example.c

运行Valgrind:

valgrind --leak-check=full ./example

Valgrind 会输出详细的内存泄漏报告,帮助你定位和修复内存泄漏问题。

 

5. 避免复杂的数据结构管理

对于复杂的动态数据结构(如链表、树等),确保有明确的内存管理策略。使用封装好的数据结构库,可以减少内存管理的复杂性。

6. 代码规范和注释

编写清晰、规范的代码,并添加适当的注释,说明内存分配和释放的逻辑,有助于团队成员理解和维护代码。

通过以上策略和最佳实践,可以有效避免内存泄漏,提高程序的稳定性和性能。

 

结束语

内存管理是C语言编程中至关重要的一环,直接影响到程序的性能和稳定性。通过本文的介绍,我们探讨了C语言中的内存分配和释放机制,以及如何避免常见的内存泄漏问题。正确地管理内存不仅可以提高程序的效率,还能减少潜在的错误和崩溃风险。

 

我们介绍了几种有效的策略和最佳实践,包括及时释放内存、使用指针管理技巧、代码审查和测试、使用内存检测工具等。希望这些方法能帮助你在实际开发中更好地管理内存,编写出更加健壮和高效的C语言程序。

 

总之,良好的内存管理习惯是每个C语言开发者必备的技能。不断学习和实践,才能在复杂的编程环境中游刃有余。希望本文对你有所帮助,祝你在C语言编程的道路上越走越远!

 

 

相关文章:

【C语言指南】C语言内存管理 深度解析

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《C语言指南》 期待您的关注 引言 C语言是一种强大而灵活的编程语言&#xff0c;为程序员提供了对内存的直接控制能力。这种对内存…...

前海华海金融创新中心的工地餐点探寻

​前海的工地餐大部分都是13元一份的哈。我在前海华海金融创新中心的工地餐点吃过一份猪杂饭&#xff0c;现做13元一份。我一般打包后回公司吃或直接桂湾公园找个环境优美的地方吃饭。 ​我点的这份猪杂汤粉主要是瘦肉、猪肝、肉饼片、豆芽和生菜&#xff0c;老板依旧贴心问需要…...

索引及练习

1.索引 &#x1f4d6;什么是索引&#xff1f; 1. 索引是对数据库一列或者多列的值进行排序的一种结构。 2. 索引的建立会大大提高 mysql 的检索速度。 3. 如果想高效的使用 mysql, 而且数据量大时&#xff0c;需要花费事件去设计索引&#xff0c;建立优秀的索引规 则&a…...

java版嘎嘎快充汽车单车充电系统源码系统jeecgboot

汽车使用云快充1.6 1.5协议&#xff0c;单车用的铁塔协议 前端uniapp、后端jeecgbootvue2...

vueRouter路由切换时实现页面子元素动画效果, 左右两侧滑入滑出效果

说明 vue路由切换时&#xff0c;当前页面左侧和右侧容器分别从两侧滑出&#xff0c;新页面左右分别从两侧滑入 效果展示 路由切换-滑入滑出效果 难点和踩坑 现路由和新路由始终存在一个页面根容器&#xff0c;通过<transition>组件&#xff0c;效果只能对页面根容器有效…...

MacOS编译hello_xr——记一次CMake搜索路径限制导致的ANDROID_NATIVE_APP_GLUE not found

首先,由于之前使用过Unity, 系统已经装好了android SDK和NDK, 所以在hello_xr文件夹下, 用local.properties文件来设置系统中二者的路径: sdk.dir/Applications/Unity/Hub/Editor/2022.3.48f1c1/PlaybackEngines/AndroidPlayer/SDK/ # ndk.dir/Applications/Unity/Hub/Editor/…...

基于NI Vision和MATLAB的图像颜色识别与透视变换

1. 任务概述 利用LabVIEW的NI Vision模块读取图片&#xff0c;对图像中具有特征颜色的部分进行识别&#xff0c;并对识别的颜色区域进行标记。接着&#xff0c;通过图像处理算法检测图像的四个顶点&#xff08;左上、左下、右上、右下&#xff09;&#xff0c;并识别每个顶点周…...

【Linux:IO多路复用(select、poll函数)

目录 什么是IO多路复用&#xff1f; select: 参数介绍&#xff1a; select函数返回值&#xff1a; fd_set类型&#xff1a; 内核如何更新集合中的标志位 处理并发问题 处理流程的步骤&#xff1a; poll: poll的函数原型&#xff1a; 参数介绍&#xff1a; select与p…...

计数排序(C语言)

一、步骤 1.首先&#xff0c;遍历数组统计出相同元素出现的次数 2.根据统计的结果将序列收回到原来的数组 方法&#xff1a;我们可以建立一个临时数组用来存储元素出现的次数&#xff0c;然后用该数组的下标表示该元素&#xff08;即假设i为临时数组的下标&#xff0c;a[i]为…...

LabVIEW弧焊参数测控系统

在现代制造业中&#xff0c;焊接技术作为关键的生产工艺之一&#xff0c;其质量直接影响到最终产品的性能与稳定性。焊接过程中&#xff0c;电流、电压等焊接参数的精确控制是保证焊接质量的核心。基于LabVIEW开发的弧焊参数测控系统&#xff0c;通过实时监控和控制焊接过程中关…...

Android笔记(三十七):封装一个RecyclerView Item曝光工具——用于埋点上报

背景 项目中首页列表页需要统计每个item的曝光情况&#xff0c;给产品运营提供数据报表分析用户行为&#xff0c;于是封装了一个通用的列表Item曝光工具&#xff0c;方便曝光埋点上报 源码分析 核心就是监听RecyclerView的滚动&#xff0c;在滚动状态为SCROLL_STATE_IDLE的时…...

【Linux】内核模版加载modprobe | lsmod

modprobe modprobe 是一个用于加载和卸载 Linux 内核模块的命令。它不仅能够加载单个模块&#xff0c;还能处理模块之间的依赖关系&#xff0c;确保所有依赖的模块都被正确加载。以下是一些关于 modprobe 命令的基本用法和常见选项的详细介绍。 基本语法 modprobe [option…...

Android从Drawable资源Id直接生成Bitmap,Kotlin

Android从Drawable资源Id直接生成Bitmap,Kotlin val t1 System.currentTimeMillis()val bmp getBmpFromDrawId(this, R.mipmap.ic_launcher_round)Log.d("fly", "1 ${bmp?.byteCount} h${bmp?.height} w${bmp?.width} cost time${System.currentTimeMillis…...

蓝桥杯——数组

1、移动数组元素 package day3;import java.util.Arrays;public class Demo1 {public static void main(String[] args) {int[] arr {1,2,3,4,5,6};int k 2;int[] arr_new f(arr,k);for (int i : arr_new) {System.out.print(i",");}//或System.out.println();St…...

在Flutter中,禁止侧滑的方法

在Flutter中&#xff0c;如果你想禁用侧滑返回功能&#xff0c;你可以使用WillPopScope小部件&#xff0c;并在onWillPop回调中返回false来阻止用户通过侧滑返回到上一个页面。 class DisableSwipePop extends StatelessWidget {overrideWidget build(BuildContext context) {…...

黑盒测试案例设计方法的使用(1)

黑盒测试用例的设计是确保软件质量的关键步骤之一。 一、等价类划分法 定义&#xff1a;把所有可能的输入数据&#xff0c;即程序的输入域划分成若干部分&#xff08;子集&#xff09;&#xff0c;然后从每一个子集中选取少数具有代表性的数据作为测试用例。 步骤&#xff1a…...

第二十一章 TCP 客户端 服务器通信 - 客户端OPEN命令

文章目录 第二十一章 TCP 客户端 服务器通信 - 客户端OPEN命令客户端OPEN命令 第二十一章 TCP 客户端 服务器通信 - 客户端OPEN命令 客户端OPEN命令 客户端OPEN命令与服务器端OPEN命令只有一个方面的不同&#xff1a;第一个设备参数必须指定要连接的主机。要指定主机&#xf…...

pycharm报错:no module named cv2.cv2

1、问题概述&#xff1f; 在项目中报错no module named cv2.cv2&#xff0c;就会导致import cv2 as cv无法使用。 需要安装opencv-python,一个开源的计算机视觉库。 2、解决办法&#xff1f; 【第一步&#xff1a;如果当前环境中已经安装&#xff0c;先卸载】 有时候会出现…...

Android音视频直播低延迟探究之:WLAN低延迟模式

Android WLAN低延迟模式 Android WLAN低延迟模式是 Android 10 引入的一种功能&#xff0c;允许对延迟敏感的应用将 Wi-Fi 配置为低延迟模式&#xff0c;以减少网络延迟&#xff0c;启动条件如下&#xff1a; Wi-Fi 已启用且设备可以访问互联网。应用已创建并获得 Wi-Fi 锁&a…...

docker 部署freeswitch(非编译方式)

一&#xff1a;安装部署 1.拉取镜像 参考&#xff1a;https://hub.docker.com/r/safarov/freeswitch docker pull safarov/freeswitch 2.启动镜像 docker run --nethost --name freeswitch \-e SOUND_RATES8000:16000 \-e SOUND_TYPESmusic:en-us-callie \-v /home/xx/f…...

OpenHarmony的公共事件

OpenHarmony的公共事件 公共事件简介 CES&#xff08;Common Event Service&#xff0c;公共事件服务&#xff09;为应用程序提供订阅、发布、退订公共事件的能力。 公共事件分类 公共事件从系统角度可分为&#xff1a;系统公共事件和自定义公共事件。 系统公共事件&#…...

深度学习transformer

Transformer可是深度学习领域的一个大热门呢&#xff01;它是一个基于自注意力的序列到序列模型&#xff0c;最初由Vaswani等人在2017年提出&#xff0c;主要用于解决自然语言处理&#xff08;NLP&#xff09;领域的任务&#xff0c;比如机器翻译、文本生成这些。它厉害的地方在…...

低成本出租屋5G CPE解决方案:ZX7981PG/ZX7981PM WIFI6千兆高速网络

刚搬进新租的房子&#xff0c;没有网络&#xff0c;开个热点&#xff1f;续航不太行。随身WIFI&#xff1f;大多是百兆级网络。找人拉宽带&#xff1f;太麻烦&#xff0c;退租的时候也不能带着走。5G CPE倒是个不错的选择&#xff0c;插入SIM卡就能直接连接5G网络&#xff0c;千…...

【黑马点评debug日记】redis登录跳转不成功

登录后一直跳转登录界面&#xff1b; debug: 网络日志报401&#xff0c; 说明前端获取的token为空&#xff1b; 查看应用程序&#xff0c; 发现没有token存储信息 前端网页增加 sessionStorage.setItem("token", data); 记得刷新网页 成功存储token...

C#自定义特性-SQL

语法 原则 自定义特性必须继承自System.Attribute类&#xff1b; AttributeUsage属性来指定特性的使用范围和是否允许重复等&#xff1b; 在特性类中定义属性&#xff0c;这些属性将用于存储特性值。 示例 using System;// 定义一个自定义特性类 [Attribute…...

协方差矩阵及其计算方法

协方差矩阵&#xff08;Covariance Matrix&#xff09;是一个描述多维数据特征之间相互关系的矩阵&#xff0c;广泛应用于统计学和机器学习中。它用于表示各个特征之间的协方差&#xff0c;是分析多维数据分布和特征依赖性的重要工具。 什么是协方差矩阵&#xff1f; 协方差矩…...

【OH】openHarmony开发环境搭建(基于windows子系统WSL)

前言 本文主要介绍基于windows子系统WSL搭建openHarmony开发环境。 WSL与Vmware虚拟机的区别&#xff0c;可以查看WSL与虚拟机的区别 更详细的安装配置过程可参考微软官网&#xff1a; ​安装 WSL 前提 以下基于windows 111专业版进行配置&#xff0c;windows 10应该也是可以…...

Visual Studio Code 端口转发功能详解

Visual Studio Code 端口转发功能详解 引言 Visual Studio Code&#xff08;简称 VS Code&#xff09;是一个功能强大的源代码编辑器&#xff0c;它支持多种编程语言的语法高亮、智能代码补全、自定义快捷键、代码重构等特性。除了这些基本功能外&#xff0c;VS Code 还提供了…...

Android Framework AMS(14)ContentProvider分析-1(CP组件应用及开机启动注册流程解读)

该系列文章总纲链接&#xff1a;专题总纲目录 Android Framework 总纲 本章关键点总结 & 说明&#xff1a; 说明&#xff1a;本章节主要解读ContentProvider组件的基本知识。关注思维导图中左上侧部分即可。 有了前面activity组件分析、service组件分析、广播组件分析的基…...

Three.js PBR材质

本文将详细介绍Three.js中的PBR&#xff08;Physically Based Rendering&#xff09;材质&#xff0c;包括PBR的基本概念、适用场景、PBR材质的构建以及一些高级应用技巧。 1. PBR&#xff08;Physically Based Rendering&#xff09;基本概念 PBR&#xff0c;即Physically B…...