当前位置: 首页 > news >正文

Python酷库之旅-第三方库Pandas(218)

目录

一、用法精讲

1021、pandas.DatetimeIndex.inferred_freq属性

1021-1、语法

1021-2、参数

1021-3、功能

1021-4、返回值

1021-5、说明

1021-6、用法

1021-6-1、数据准备

1021-6-2、代码示例

1021-6-3、结果输出

1022、pandas.DatetimeIndex.indexer_at_time方法

1022-1、语法

1022-2、参数

1022-3、功能

1022-4、返回值

1022-5、说明

1022-6、用法

1022-6-1、数据准备

1022-6-2、代码示例

1022-6-3、结果输出

1023、pandas.DatetimeIndex.indexer_between_time方法

1023-1、语法

1023-2、参数

1023-3、功能

1023-4、返回值

1023-5、说明

1023-6、用法

1023-6-1、数据准备

1023-6-2、代码示例

1023-6-3、结果输出

1024、pandas.DatetimeIndex.normalize方法

1024-1、语法

1024-2、参数

1024-3、功能

1024-4、返回值

1024-5、说明

1024-6、用法

1024-6-1、数据准备

1024-6-2、代码示例

1024-6-3、结果输出

1025、pandas.DatetimeIndex.strftime方法

1025-1、语法

1025-2、参数

1025-3、功能

1025-4、返回值

1025-5、说明

1025-6、用法

1025-6-1、数据准备

1025-6-2、代码示例

1025-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

1021、pandas.DatetimeIndex.inferred_freq属性
1021-1、语法
# 1021、pandas.DatetimeIndex.inferred_freq属性
pandas.DatetimeIndex.inferred_freq
Tries to return a string representing a frequency generated by infer_freq.Returns None if it can’t autodetect the frequency.
1021-2、参数

        无

1021-3、功能

        用于获取DatetimeIndex对象的推断频率,它可以帮助用户了解时间序列数据的频率模式,在进行时间序列分析时非常重要。

1021-4、返回值

        返回一个字符串,表示DatetimeIndex中日期时间的推断频率,如果无法推断出明确的频率,则返回None,推断频率可以是以下几种类型,例如:

  • 'D':日频
  • 'h':小时频
  • 'min':分钟频
  • 's':秒频
  • 'ME':月末频
  • 'YE':年末频
1021-5、说明

        无

1021-6、用法
1021-6-1、数据准备
1021-6-2、代码示例
# 1021、pandas.DatetimeIndex.inferred_freq属性
import pandas as pd
# 创建一个包含日期的DatetimeIndex
dates = pd.date_range(start='2024-11-14', periods=5, freq='YE')
datetime_index = pd.DatetimeIndex(dates)
# 获取推断的频率
frequency = datetime_index.inferred_freq
# 输出结果
print(frequency)
1021-6-3、结果输出
# 1021、pandas.DatetimeIndex.inferred_freq属性
# YE-DEC
1022、pandas.DatetimeIndex.indexer_at_time方法
1022-1、语法
# 1022、pandas.DatetimeIndex.indexer_at_time方法
pandas.DatetimeIndex.indexer_at_time(time, asof=False)
Return index locations of values at particular time of day.Parameters:
time
datetime.time or str
Time passed in either as object (datetime.time) or as string in appropriate format (“%H:%M”, “%H%M”, “%I:%M%p”, “%I%M%p”, “%H:%M:%S”, “%H%M%S”, “%I:%M:%S%p”, “%I%M%S%p”).Returns:
np.ndarray[np.intp]
1022-2、参数

1022-2-1、time(必需)字符串或datetime.time对象,表示需要匹配的时间,格式通常是'HH:MM'。

1022-2-2、asof(可选,默认值为False)布尔值,如果设置为True,该方法将返回所提供时间之前的最近索引,而不是所有匹配的索引。

1022-3、功能

        用于查找特定时间在DatetimeIndex中的索引位置,该方法允许你根据给定的时间字符串或时间对象,获取所有匹配的索引,其参数asof还可以进一步定义返回的行为。

1022-4、返回值

        返回一个整数数组,表示所有匹配或最近匹配的索引位置,如果没有匹配项,则返回一个空数组。

1022-5、说明

        无

1022-6、用法
1022-6-1、数据准备
1022-6-2、代码示例
# 1022、pandas.DatetimeIndex.indexer_at_time方法
import pandas as pd
# 创建一个日期范围
date_rng = pd.date_range(start='2024-11-14', end='2024-11-18', freq='h')
datetime_index = pd.DatetimeIndex(date_rng)
# 查找特定时间 (12:00)
indexer_all = datetime_index.indexer_at_time('12:00')
print("All indices for time 12:00:", indexer_all)
print("Corresponding dates:", datetime_index[indexer_all])
1022-6-3、结果输出
# 1022、pandas.DatetimeIndex.indexer_at_time方法
# All indices for time 12:00: [12 36 60 84]
# Corresponding dates: DatetimeIndex(['2024-11-14 12:00:00', '2024-11-15 12:00:00',
#                '2024-11-16 12:00:00', '2024-11-17 12:00:00'],
#               dtype='datetime64[ns]', freq=None)
1023、pandas.DatetimeIndex.indexer_between_time方法
1023-1、语法
# 1023、pandas.DatetimeIndex.indexer_between_time方法
pandas.DatetimeIndex.indexer_between_time(start_time, end_time, include_start=True, include_end=True)
Return index locations of values between particular times of day.Parameters:
start_time, end_time
datetime.time, str
Time passed either as object (datetime.time) or as string in appropriate format (“%H:%M”, “%H%M”, “%I:%M%p”, “%I%M%p”, “%H:%M:%S”, “%H%M%S”, “%I:%M:%S%p”,”%I%M%S%p”).include_start
bool, default True
include_end
bool, default True
Returns:
np.ndarray[np.intp]
1023-2、参数

1023-2-1、start_time(必需)字符串或datetime.time对象,表示时间范围的起始时间。

1023-2-2、end_time(必需)字符串或datetime.time对象,表示时间范围的结束时间。

1023-2-3、include_start(可选,默认值为True)布尔值,如果为True,则包含起始时间的索引。

1023-2-4、include_end(可选,默认值为True)布尔值,如果为True,则包含结束时间的索引。

1023-3、功能

        用于查找在指定时间范围内的索引位置,该方法非常适合处理时间序列数据,尤其是在你需要筛选特定时间段的数据时。

1023-4、返回值

        返回一个整数数组,表示在指定时间范围内的所有匹配索引位置,如果没有匹配项,则返回一个空数组。

1023-5、说明

        无

1023-6、用法
1023-6-1、数据准备
1023-6-2、代码示例
# 1023、pandas.DatetimeIndex.indexer_between_time方法
import pandas as pd
# 创建一个日期范围
date_rng = pd.date_range(start='2024-11-14', end='2024-11-17', freq='h')
datetime_index = pd.DatetimeIndex(date_rng)
# 查找在特定时间范围内的索引 (例如 10:00 到 12:00)
indexer = datetime_index.indexer_between_time('10:00', '12:00')
print("Indices between 10:00 and 12:00:", indexer)
print("Corresponding dates:", datetime_index[indexer])
# 查找不包含起始时间的索引
indexer_exclude_start = datetime_index.indexer_between_time('10:00', '12:00', include_start=False)
print("Indices between 10:00 and 12:00 (excluding start):", indexer_exclude_start)
print("Corresponding dates:", datetime_index[indexer_exclude_start])
1023-6-3、结果输出
# 1023、pandas.DatetimeIndex.indexer_between_time方法
# Indices between 10:00 and 12:00: [10 11 12 34 35 36 58 59 60]
# Corresponding dates: DatetimeIndex(['2024-11-14 10:00:00', '2024-11-14 11:00:00',
#                '2024-11-14 12:00:00', '2024-11-15 10:00:00',
#                '2024-11-15 11:00:00', '2024-11-15 12:00:00',
#                '2024-11-16 10:00:00', '2024-11-16 11:00:00',
#                '2024-11-16 12:00:00'],
#               dtype='datetime64[ns]', freq=None)
# Indices between 10:00 and 12:00 (excluding start): [11 12 35 36 59 60]
# Corresponding dates: DatetimeIndex(['2024-11-14 11:00:00', '2024-11-14 12:00:00',
#                '2024-11-15 11:00:00', '2024-11-15 12:00:00',
#                '2024-11-16 11:00:00', '2024-11-16 12:00:00'],
#               dtype='datetime64[ns]', freq=None)
1024、pandas.DatetimeIndex.normalize方法
1024-1、语法
# 1024、pandas.DatetimeIndex.normalize方法
pandas.DatetimeIndex.normalize(*args, **kwargs)
Convert times to midnight.The time component of the date-time is converted to midnight i.e. 00:00:00. This is useful in cases, when the time does not matter. Length is unaltered. The timezones are unaffected.This method is available on Series with datetime values under the .dt accessor, and directly on Datetime Array/Index.Returns:
DatetimeArray, DatetimeIndex or Series
The same type as the original data. Series will have the same name and index. DatetimeIndex will have the same name.
1024-2、参数

1024-2-1、*args(可选)其他位置参数,为后续扩展功能做预留。

1024-2-2、**kwargs(可选)其他关键字参数,为后续扩展功能做预留。

1024-3、功能

        用于将DatetimeIndex中的所有时间戳调整为相同的日期部分,具体来说就是将时间部分归零,对于比较或对齐时间序列数据非常有用。

1024-4、返回值

        返回一个新的DatetimeIndex,其中所有的时间部分都被设置为00:00:00(即午夜)。

1024-5、说明

        无

1024-6、用法
1024-6-1、数据准备
1024-6-2、代码示例
# 1024、pandas.DatetimeIndex.normalize方法
import pandas as pd
# 创建一个包含多个日期时间的DatetimeIndex
dates = pd.to_datetime(['2024-11-14 10:30:00', '2024-11-15 12:45:00', '2024-11-16 15:00:00'])
datetime_index = pd.DatetimeIndex(dates)
# 归一化DatetimeIndex
normalized_index = datetime_index.normalize()
print("原始DatetimeIndex:")
print(datetime_index)
print("\n归一化后的DatetimeIndex:")
print(normalized_index)
1024-6-3、结果输出
# 1024、pandas.DatetimeIndex.normalize方法
# 原始DatetimeIndex:
# DatetimeIndex(['2024-11-14 10:30:00', '2024-11-15 12:45:00',
#                '2024-11-16 15:00:00'],
#               dtype='datetime64[ns]', freq=None)
# 
# 归一化后的DatetimeIndex:
# DatetimeIndex(['2024-11-14', '2024-11-15', '2024-11-16'], dtype='datetime64[ns]', freq='D')
1025、pandas.DatetimeIndex.strftime方法
1025-1、语法
# 1025、pandas.DatetimeIndex.strftime方法
pandas.DatetimeIndex.strftime(date_format)
Convert to Index using specified date_format.Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in python string format doc.Formats supported by the C strftime API but not by the python string format doc (such as “%R”, “%r”) are not officially supported and should be preferably replaced with their supported equivalents (such as “%H:%M”, “%I:%M:%S %p”).Note that PeriodIndex support additional directives, detailed in Period.strftime.Parameters:
date_format
str
Date format string (e.g. “%Y-%m-%d”).Returns:
ndarray[object]
NumPy ndarray of formatted strings.
1025-2、参数

1025-2-1、date_format(必需)一个字符串,表示日期和时间的格式,与Python的strftime方法一致,您可以使用各种格式代码来指定要显示的日期和时间信息。

1025-3、功能

        用于将DatetimeIndex中的日期时间对象格式化为指定的字符串格式,该方法通常用于将时间戳转换为更易读的字符串格式,以便于展示或记录。

1025-4、返回值

        返回一个包含格式化字符串的NumPy数组(numpy.ndarray),每个元素对应于DatetimeIndex中的相应时间戳。

1025-5、说明

        无

1025-6、用法
1025-6-1、数据准备
1025-6-2、代码示例
# 1025、pandas.DatetimeIndex.strftime方法
import pandas as pd
# 创建一个包含多个日期时间的DatetimeIndex
dates = pd.to_datetime(['2024-11-14 10:30:00', '2024-11-15 12:45:00', '2024-11-16 15:00:00'])
datetime_index = pd.DatetimeIndex(dates)
# 使用strftime格式化日期和时间
formatted_dates = datetime_index.strftime('%Y-%m-%d %H:%M:%S')
print("原始DatetimeIndex:")
print(datetime_index)
print("\n格式化后的字符串:")
print(formatted_dates)
1025-6-3、结果输出
# 1025、pandas.DatetimeIndex.strftime方法
# 原始DatetimeIndex:
# DatetimeIndex(['2024-11-14 10:30:00', '2024-11-15 12:45:00',
#                '2024-11-16 15:00:00'],
#               dtype='datetime64[ns]', freq=None)
# 
# 格式化后的字符串:
# Index(['2024-11-14 10:30:00', '2024-11-15 12:45:00', '2024-11-16 15:00:00'], dtype='object')

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

相关文章:

Python酷库之旅-第三方库Pandas(218)

目录 一、用法精讲 1021、pandas.DatetimeIndex.inferred_freq属性 1021-1、语法 1021-2、参数 1021-3、功能 1021-4、返回值 1021-5、说明 1021-6、用法 1021-6-1、数据准备 1021-6-2、代码示例 1021-6-3、结果输出 1022、pandas.DatetimeIndex.indexer_at_time方…...

斗鱼大数据面试题及参考答案

MySQL 索引及引擎区别 一、MySQL 索引 索引是一种数据结构,用于快速查找数据库中的数据。它就像是一本书的目录,通过索引可以快速定位到需要的数据行,而不用全表扫描。 普通索引 普通索引是最基本的索引类型,它没有任何限制,可以在一个或多个列上创建。例如,在一个用户表…...

后仿真中的GLS测试用例的选取规则

一 仿真目的 门级仿真的主要目的,从根本上来说,是确保在物理实现阶段所应用的SDC(Standard Delay Constraint,标准延迟约束文件)中的各项约束条件准确无误地反映了设计的初衷和要求。这一环节在芯片设计的整体流程中占据着至关重要的地位,因为它直接关系到最终芯片的物理…...

对接阿里云实人认证

对接阿里云实人认证-身份二要素核验接口整理 目录 应用场景 接口文档 接口信息 请求参数 响应参数 调试 阿里云openApi平台调试 查看调用结果 查看SDK示例 下载SDK 遇到问题 本地调试 总结 应用场景 项目有一个提现的场景,需要用户真实的身份信息。 …...

UI库架构设计

UI库架构设计 分层 rc-xxx,提供基础组件,unstyled component (headless) ,只具备功能交互,不具备UI表现样式体系基础组件复合组件,Search:Input Select ,IconButton:Icon Button业…...

电子应用产品设计方案-9:全自动智能马桶系统设计方案

一、系统概述 本全自动智能马桶系统旨在提供舒适、卫生、便捷和智能化的如厕体验。通过融合多种传感器技术、电子控制单元和机械执行机构,实现马桶的自动冲洗、座圈加热、臀部清洗、烘干等功能,并具备智能感应、用户个性化设置和健康监测等特色功能。 二…...

My_SQL day3

知识点:约束 1.dafault 默认约束 2.not null 非空约束 3.unique key 唯一约束 4.primary key 主键约束 5.anto_increment 自增长约束 6.foreign key 外键约束 知识点:表关系 1.一对一 2.一对多 3.多对多 知识点:约束 1.default 默认约束 …...

【代码随想录day31】【C++复健】56. 合并区间;738.单调递增的数字

56. 合并区间 遇到了三个问题,一一说来: 1 比较应该按左区间排序,我却写了右区间。由于本题是合并区间,判断是否连续显然是用下一个的左区间与前一个的右区间比较,属于没想清楚了。 2 在写for循环时写成了如下的代码…...

jmeter常用配置元件介绍总结之逻辑控制器

系列文章目录 安装jmeter jmeter常用配置元件介绍总结之逻辑控制器 逻辑控制器1.IF控制器2.事务控制器3.循环控制器4.While控制器5.ForEach控制器6.Include控制器7.Runtime控制器8.临界部分控制器9.交替控制器10.仅一次控制器11.简单控制器12.随机控制器13.随机顺序控制器14.吞…...

解决Windows远程桌面 “为安全考虑,已锁定该用户账户,原因是登录尝试或密码更改尝试过多。请稍后片刻再重试,或与系统管理员或技术支持联系“问题

当我们远程连接服务器连接不上并提示“为安全考虑,已锁定该用户账户,原因是登录尝试或密码更改尝试过多。请稍候片刻再重试,或与系统管理员或技术支持联系”时,根本原因是当前计算机远程连接时输入了过多的错误密码,触…...

中文书籍对《人月神话》的引用(161-210本):微软的秘密

中文书籍对《人月神话》的引用(第001到160本)>> 《人月神话》于1975年出版,1995年出二十周年版。自出版以来,该书被大量的书籍和文章引用,直到现在热潮不退。 2023年,清华大学出版社推出《人月神话》…...

关于写React的一些反思和总结

这两个星期我都一直在写IT资产管理这个模块。关于这个模块,前端和后端都是我来处理,对于后端,我碰到了很多问题,但是很多问题都可以在比较短的时间内解决,而且不会说完全没有头绪的那种,这一方面源于我本身…...

Qt 每日面试题 -10

91、Qt设计界面有哪些方式? 手工编写创建界面的代码︰此方法比较复杂,不够直观;使用Qt Designer界面编辑器设计︰可直接拖放控件、设置控件的属性,简单、直观、易于操作;动态加载Ul文件并生成界面︰(QUiLoader类加载xx.ui)此方法很灵活,当需…...

三正科技笔试题

(15题,45分钟,闭卷) 一、( 8 分 )请问以下程序输出什么结果? char *getStr(void) 。 { char p[] "hellow world"; return p; } void test(void) { ch…...

Selective attention improves transformer详细解读

Selective attention improves transformer Google 2024.10.3 一句话:简单且无需额外参数的选择性注意力机制,通过选择性忽略不相关信息并进行上下文剪枝,在不增加计算复杂度的情况下显著提升了Transformer模型的语言建模性能和推理效率。 论…...

git配置用户信息

在 Git 中配置用户信息,主要是设置你的用户名和电子邮件地址,这些信息会被 Git 用来记录提交的作者信息。以下是配置用户信息的步骤: 打开命令行工具。 设置你的用户名: git config --global user.name "你的名字"例如…...

【eNSP】路由基础与路由来源——静态路由实验

路由是数据包从源地址到目的地址的传输路径,静态路由是指网络管理员手动配置的路由条目,用于指定数据包从源地址到目的地址的固定路径。以下是关于静态路由的详细介绍。 一、路由的基础知识点 路由的定义: 路由是指在计算机网络中&#xff…...

Python Web 应用开发基础知识

Python Web 应用开发基础知识 引言 随着互联网的快速发展,Web 应用程序的需求日益增加。Python 作为一种简单易学且功能强大的编程语言,已经成为 Web 开发中广受欢迎的选择之一。本文将深入探讨 Python Web 开发的基础知识,包括常用框架、基…...

STM32 标准库函数 GPIO_SetBits、GPIO_ResetBits、GPIO_WriteBit、GPIO_Write 区别

GPIO_SetBits: 使用例: GPIO_SetBits(GPIOA, GPIO_Pin_1 | GPIO_Pin_2);意思是将GPIOA1和GPIOA2设为高电平 GPIO_SetBits(GPIOA, 0x0003);意思也是将GPIOA1和GPIOA2设为高电平 实际上当选中GPIOA时,它会按位遍历,在哪一位有1说…...

【Redis_Day4】内部编码和单线程模型

【Redis_Day4】内部编码和单线程模型 五大数据类型内部编码object encoding key1:查询key1对应值的内部编码 redis中的单线程模型 redis中的数据都是以键值对的方式存的,redis内部用哈希表组织这些键值对。 五大数据类型 站在用户角度, 在一…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...