排序算法 -计数排序
文章目录
- 1. 计数排序(Counting Sort)
- 1.1 简介
- 1.2 计数排序的步骤
- 1.3 计数排序C语言实现
- 注释说明:
- 1.4 时间复杂度
- 1.5 空间复杂度
1. 计数排序(Counting Sort)
1.1 简介
计数排序(Counting Sort)是一种非比较型整数排序算法,适用于一定范围内的整数排序。它的基本思想是通过计数来确定每个元素在排序后数组中的位置,从而实现排序。计数排序的时间复杂度为 O(n + k),其中 n 是待排序数组的元素个数,k 是待排序元素的取值范围。
1.2 计数排序的步骤
计数排序(Counting Sort)是一种非比较型整数排序算法,适用于一定范围内的整数排序。它的基本思想是通过计数来确定每个元素在排序后数组中的位置,从而实现排序。计数排序的时间复杂度为 O(n + k),其中 n 是待排序数组的元素个数,k 是待排序元素的取值范围。
- 找出待排序数组中的最大值和最小值,以确定元素的取值范围。
- 创建一个计数数组,其大小为最大值与最小值之差加一(因为包含边界值)。
- 遍历待排序数组,统计每个元素出现的次数,并将结果存储在计数数组中。
- 计算前缀和,以确定每个元素在排序后数组中的位置。
- 创建输出数组,根据计数数组中的信息将元素放入正确的位置。
1.3 计数排序C语言实现
#include <stdio.h>
#include <stdlib.h>// 计数排序函数
void CountSort(int* a, int n) {// 初始化最大值和最小值为数组的第一个元素int max = a[0], min = a[0];// 遍历数组,找到最大值和最小值for (int i = 1; i < n; i++) { // 注意这里从1开始,因为第一个元素已经用于初始化if (a[i] > max)max = a[i]; // 更新最大值if (a[i] < min)min = a[i]; // 更新最小值}// 计算计数数组的大小,并动态分配内存int range = max - min + 1;int* count = (int*)malloc(range * sizeof(int));if (count == NULL) {// 内存分配失败处理(这里简单处理为退出程序,实际应用中可能需要更复杂的错误处理)fprintf(stderr, "Memory allocation failed\n");exit(EXIT_FAILURE);}// 初始化计数数组为0for (int i = 0; i < range; i++) {count[i] = 0;}// 统计每个元素出现的次数for (int i = 0; i < n; i++) {count[a[i] - min]++; // 使用元素值减去最小值作为计数数组的下标}// 重建排序后的数组int* output = (int*)malloc(n * sizeof(int));if (output == NULL) {// 内存分配失败处理free(count); // 释放已经分配的内存fprintf(stderr, "Memory allocation failed\n");exit(EXIT_FAILURE);}int index = 0; // 用于填充输出数组的索引for (int i = 0; i < range; i++) {// 对于每个在计数数组中出现的元素,将其填充到输出数组中while (count[i] > 0) {output[index] = i + min;index++;count[i]--;}}// 将排序后的数组复制回原数组for (int i = 0; i < n; i++) {a[i] = output[i];}// 释放动态分配的内存free(count);free(output);
}// 主函数,用于测试计数排序
int main() {int arr[] = {4, 2, 2, 8, 3, 3, 1};int n = sizeof(arr) / sizeof(arr[0]);// 调用计数排序函数CountSort(arr, n);// 打印排序后的数组for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}printf("\n");return 0;
}
注释说明:
-
初始化最大值和最小值:
- 将数组的第一个元素赋值给最大值
max和最小值min。
- 将数组的第一个元素赋值给最大值
-
找到最大值和最小值:
- 遍历数组(从第二个元素开始,因为第一个元素已经用于初始化),更新最大值和最小值。
-
动态分配计数数组:
- 根据最大值和最小值计算计数数组的大小(范围),并动态分配内存。
- 检查内存分配是否成功,如果失败则处理错误(这里简单处理为退出程序)。
- 初始化计数数组为0。
-
统计每个元素出现的次数:
- 遍历输入数组,使用元素值减去最小值作为计数数组的下标,统计每个元素的出现次数。
-
重建排序后的数组:
- 动态分配一个大小为
n的输出数组。 - 使用两个循环:外循环遍历计数数组,内循环(
while循环)根据计数数组的值将元素填充到输出数组中。 - 注意,这里我们没有显式地计算前缀和,而是直接在填充输出数组时减少了计数数组的值。
- 动态分配一个大小为
-
将排序后的数组复制回原数组:
- 遍历输出数组,将排序后的元素复制回原数组。
-
释放内存:
- 释放计数数组和输出数组所占用的内存。
-
主函数:
- 初始化一个待排序的数组。
- 调用计数排序函数。
- 打印排序后的数组。
计数排序(Counting Sort)的时间复杂度和空间复杂度分析如下:
1.4 时间复杂度
-
查找最大值和最小值:
- 需要遍历整个数组一次,因此时间复杂度为 O ( n ) O(n) O(n)。
-
初始化计数数组并统计元素出现次数:
- 初始化计数数组的时间复杂度为 O ( k ) O(k) O(k),其中 k k k 是计数数组的大小(即输入数组中的最大值与最小值之差加一)。
- 遍历输入数组并统计元素出现次数的时间复杂度为 O ( n ) O(n) O(n)。
-
重建排序后的数组:
- 遍历计数数组并根据其值填充输出数组的时间复杂度为 O ( n + k ) O(n + k) O(n+k),但在最坏情况下(即所有元素都相同或非常接近时),这仍然可以看作是 O ( n ) O(n) O(n),因为 k k k 是由输入数据决定的,并且通常远小于 n n n 的数量级时,我们可以忽略 k k k 对时间复杂度的影响(但这取决于具体情况,如果 k k k 和 n n n 相近,则不能忽略)。
综上所述,计数排序的总时间复杂度在 O ( n + k ) O(n + k) O(n+k),其中 n n n 是输入数组的大小, k k k 是输入数据的范围(最大值与最小值之差加一)。在输入数据范围较小的情况下,计数排序是非常高效的。
1.5 空间复杂度
- 计数数组:需要额外一个大小为 k k k 的数组来存储每个元素的出现次数。
- 输出数组(如果单独分配):在重建排序后的数组时,如果分配了一个单独的输出数组,则需要额外的 n n n 个空间。但如前所述,这可以通过直接在原数组上重建来避免。
相关文章:
排序算法 -计数排序
文章目录 1. 计数排序(Counting Sort)1.1 简介1.2 计数排序的步骤1.3 计数排序C语言实现注释说明: 1.4 时间复杂度1.5 空间复杂度 1. 计数排序(Counting Sort) 1.1 简介 计数排序(Counting Sortÿ…...
Java学习,基本数据类型
变量就是申请内存来存储值,当创建变量的时候,需要在内存中申请空间。内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据。Java 提供了八种基本数据类型,这些类型可以分为四大类:整数类型…...
单片机GPIO中断+定时器 软件串口通信
单片机GPIO中断定时器 软件串口通信 解决思路代码示例 解决思路 串口波特率9600bps,每个bit约为1000000us/9600104.16us; 定时器第一次定时时间设为52us即半个bit的时间,其目的是偏移半个bit时间,之后的每104us采样并读取1bit数据。使得采样…...
elementui el-table中给表头 el-table-column 加一个鼠标移入提示说明
前言 在使用el-table 表格中有些表格的表头需要加入一些提示,鼠标移入则出现提示,非常实用,我是通过el-table中的el-tooltip实现的,以下的效果预览 代码实现 <el-table ref"multipleTable" :data"data"…...
NVR小程序接入平台/设备EasyNVR多个NVR同时管理设备接入:海康NVR 3.0提示不在线如何处理?
在视频监控领域,设备的兼容性和互操作性一直是用户关注的重点。海康NVR管理平台EasyNVR作为一款轻量级的视频监控平台,凭借其强大的兼容性、可扩展性和丰富的功能,成为了公共安全领域“云平台”解决方案的杰出代表。然而,在实际应…...
datawhale11月组队学习 模型压缩技术2:PyTorch模型剪枝教程
文章目录 一、 prune模块简介1.1 常用方法1.2 剪枝效果1.3 二、三、四章剪枝测试总结 二、局部剪枝(Local Pruning)2.1 结构化剪枝2.1.1 对weight进行随机结构化剪枝(random_structured)2.1.2 对weight进行迭代剪枝(范…...
SOL链上Meme生态的崛起与未来#Dapp开发#链游#交易所#公链搭建
近年来,随着区块链技术的普及和NFT文化的流行,meme(网络迷因)逐渐成为区块链生态中的重要组成部分。meme不仅是一种互联网文化符号,更逐步渗透进了去中心化金融(DeFi)、NFT和元宇宙等多个领域&a…...
部署Apache Doris
官方文档:https://doris.apache.org/zh-CN/installing/compilation.html 一、编译 使用 Docker 开发镜像编译(推荐) 1.拉取镜像 #下载 Docker 最新主干版本代码,会随主干版本不断更新。 $ docker pull apache/incubator-doris:…...
ElasticSearch-全文检索(一)基本介绍
简介 Elasticsearch:官方分布式搜索和分析引擎 | Elastic 全文搜索属于最常见的需求,开源的Elasticsearch是目前全文搜索引擎的首选。 它可以快速地储存、搜索和分析海量数据。维基百科、StackOverflow、Github都采用它 Elastic的底层是开源库Lucene。但…...
paramiko 库实现的暴力破解 SSH 密码
import paramiko import optparse import threading import time from threading import Thread, BoundedSemaphore# 用paramiko暴力破解SSH密码 # 最大并发连接尝试的数量,可根据实际情况调整,适当减小可降低对目标服务器的压力以及减少多线程同步问题出…...
Python 操作 Elasticsearch 全指南:从连接到数据查询与处理
文章目录 Python 操作 Elasticsearch 全指南:从连接到数据查询与处理引言安装 elasticsearch-py连接到 Elasticsearch创建索引插入数据查询数据1. 简单查询2. 布尔查询 更新文档删除文档和索引删除文档删除索引 批量插入数据处理分页结果总结 Python 操作 Elasticse…...
Jarvis March算法详解及Python实现(附设计模式案例)
目录 Jarvis March算法详解及Python实现(附设计模式案例)第一部分:Jarvis March算法概述与原理1.1 什么是Jarvis March算法?1.2 算法原理1.3 算法流程1.4 时间复杂度第二部分:Jarvis March算法的Python实现(面向对象设计)2.1 面向对象设计2.2 代码实现2.3 代码解释第三部…...
AIGC中的文本风格迁移:基于深度学习的实现
引言 文本风格迁移是自然语言处理领域的一个重要研究方向,它可以将文本从一种风格转换为另一种风格,同时保留其原有的内容。随着深度学习技术的发展,文本风格迁移的方法变得越来越先进和高效。本文将探讨基于序列到序列模型(Seq2…...
丹摩征文活动 |【前端开发】HTML+CSS+JavaScript前端三剑客的基础知识体系了解
前言 🌟🌟本期讲解关于HTMLCSSJavaScript的基础知识,小编带领大家简单过一遍~~~ 🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客 🔥 你的点赞就是小编不断更新的最大动力 …...
响应“一机两用”政策 落实政务外网安全
在数字化时代,政务办公外网安全的重要性日益凸显,特别是在“一机两用”的背景下,即同一台终端既要处理政务内网的数据,又要访问互联网,这对网络安全提出了更高的要求。深信达SPN安全上网方案,即反向沙箱技术…...
通过JS删除当前域名中的全部COOKIE教程
有时候需要通过JS来控制一下网站的登录状态,就例如:网站登出功能,我们可以直接通过JS将所有COOKIE删除,COOKIE删除之后,网站自然也就退出了。 那么今天我就给大家分享一段JS的函数,通过调用这段函数就可以实现删除COO…...
Flutter:Widget生命周期
StatelessWidget:无状态部件的生命周期 import package:flutter/material.dart;void main() {runApp(App()); }class App extends StatelessWidget {overrideWidget build(BuildContext context) {return MaterialApp(home: MyHomePage(title: MyHome),);} }class M…...
Flutter:Dio下载文件到本地
import dart:io; import package:dio/dio.dart;main(){// 创建dio对象final dio Dio();// 下载地址var url https://*******.org/files/1.0.0.apk;// 手机端路径String savePath Directory.systemTemp.path/ceshi.apk;print(savePath);downLoad(dio,url,savePath); }downLo…...
[⑧5G NR]: PBCH payload生成
本篇博客记录下5G PBCH信道中payload数据的生成方式。PBCH payload一共32个比特,基本结构如下图: 根据SSB PDU中bchPayloadFlag的值有三种方式得到PBCH payload。 bchPayloadFlag 0:全部32比特由MAC层提供。 bchPayloadFlag 1:M…...
查看解决端口占用,以及docker解决端口占用的原理
在软件开发和部署过程中,端口占用是一个常见的问题。以下是查看和解决端口占用问题的完整解决方案: 一、查看端口占用情况 1. 在 Linux 系统中 方法一:使用 lsof 命令 sudo lsof -i:<端口号>输出信息中会显示占用端口的进程名称、PI…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
