排序算法 -计数排序
文章目录
- 1. 计数排序(Counting Sort)
- 1.1 简介
- 1.2 计数排序的步骤
- 1.3 计数排序C语言实现
- 注释说明:
- 1.4 时间复杂度
- 1.5 空间复杂度
1. 计数排序(Counting Sort)
1.1 简介
计数排序(Counting Sort)是一种非比较型整数排序算法,适用于一定范围内的整数排序。它的基本思想是通过计数来确定每个元素在排序后数组中的位置,从而实现排序。计数排序的时间复杂度为 O(n + k),其中 n 是待排序数组的元素个数,k 是待排序元素的取值范围。
1.2 计数排序的步骤
计数排序(Counting Sort)是一种非比较型整数排序算法,适用于一定范围内的整数排序。它的基本思想是通过计数来确定每个元素在排序后数组中的位置,从而实现排序。计数排序的时间复杂度为 O(n + k),其中 n 是待排序数组的元素个数,k 是待排序元素的取值范围。
- 找出待排序数组中的最大值和最小值,以确定元素的取值范围。
- 创建一个计数数组,其大小为最大值与最小值之差加一(因为包含边界值)。
- 遍历待排序数组,统计每个元素出现的次数,并将结果存储在计数数组中。
- 计算前缀和,以确定每个元素在排序后数组中的位置。
- 创建输出数组,根据计数数组中的信息将元素放入正确的位置。
1.3 计数排序C语言实现
#include <stdio.h>
#include <stdlib.h>// 计数排序函数
void CountSort(int* a, int n) {// 初始化最大值和最小值为数组的第一个元素int max = a[0], min = a[0];// 遍历数组,找到最大值和最小值for (int i = 1; i < n; i++) { // 注意这里从1开始,因为第一个元素已经用于初始化if (a[i] > max)max = a[i]; // 更新最大值if (a[i] < min)min = a[i]; // 更新最小值}// 计算计数数组的大小,并动态分配内存int range = max - min + 1;int* count = (int*)malloc(range * sizeof(int));if (count == NULL) {// 内存分配失败处理(这里简单处理为退出程序,实际应用中可能需要更复杂的错误处理)fprintf(stderr, "Memory allocation failed\n");exit(EXIT_FAILURE);}// 初始化计数数组为0for (int i = 0; i < range; i++) {count[i] = 0;}// 统计每个元素出现的次数for (int i = 0; i < n; i++) {count[a[i] - min]++; // 使用元素值减去最小值作为计数数组的下标}// 重建排序后的数组int* output = (int*)malloc(n * sizeof(int));if (output == NULL) {// 内存分配失败处理free(count); // 释放已经分配的内存fprintf(stderr, "Memory allocation failed\n");exit(EXIT_FAILURE);}int index = 0; // 用于填充输出数组的索引for (int i = 0; i < range; i++) {// 对于每个在计数数组中出现的元素,将其填充到输出数组中while (count[i] > 0) {output[index] = i + min;index++;count[i]--;}}// 将排序后的数组复制回原数组for (int i = 0; i < n; i++) {a[i] = output[i];}// 释放动态分配的内存free(count);free(output);
}// 主函数,用于测试计数排序
int main() {int arr[] = {4, 2, 2, 8, 3, 3, 1};int n = sizeof(arr) / sizeof(arr[0]);// 调用计数排序函数CountSort(arr, n);// 打印排序后的数组for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}printf("\n");return 0;
}
注释说明:
-
初始化最大值和最小值:
- 将数组的第一个元素赋值给最大值
max
和最小值min
。
- 将数组的第一个元素赋值给最大值
-
找到最大值和最小值:
- 遍历数组(从第二个元素开始,因为第一个元素已经用于初始化),更新最大值和最小值。
-
动态分配计数数组:
- 根据最大值和最小值计算计数数组的大小(范围),并动态分配内存。
- 检查内存分配是否成功,如果失败则处理错误(这里简单处理为退出程序)。
- 初始化计数数组为0。
-
统计每个元素出现的次数:
- 遍历输入数组,使用元素值减去最小值作为计数数组的下标,统计每个元素的出现次数。
-
重建排序后的数组:
- 动态分配一个大小为
n
的输出数组。 - 使用两个循环:外循环遍历计数数组,内循环(
while
循环)根据计数数组的值将元素填充到输出数组中。 - 注意,这里我们没有显式地计算前缀和,而是直接在填充输出数组时减少了计数数组的值。
- 动态分配一个大小为
-
将排序后的数组复制回原数组:
- 遍历输出数组,将排序后的元素复制回原数组。
-
释放内存:
- 释放计数数组和输出数组所占用的内存。
-
主函数:
- 初始化一个待排序的数组。
- 调用计数排序函数。
- 打印排序后的数组。
计数排序(Counting Sort)的时间复杂度和空间复杂度分析如下:
1.4 时间复杂度
-
查找最大值和最小值:
- 需要遍历整个数组一次,因此时间复杂度为 O ( n ) O(n) O(n)。
-
初始化计数数组并统计元素出现次数:
- 初始化计数数组的时间复杂度为 O ( k ) O(k) O(k),其中 k k k 是计数数组的大小(即输入数组中的最大值与最小值之差加一)。
- 遍历输入数组并统计元素出现次数的时间复杂度为 O ( n ) O(n) O(n)。
-
重建排序后的数组:
- 遍历计数数组并根据其值填充输出数组的时间复杂度为 O ( n + k ) O(n + k) O(n+k),但在最坏情况下(即所有元素都相同或非常接近时),这仍然可以看作是 O ( n ) O(n) O(n),因为 k k k 是由输入数据决定的,并且通常远小于 n n n 的数量级时,我们可以忽略 k k k 对时间复杂度的影响(但这取决于具体情况,如果 k k k 和 n n n 相近,则不能忽略)。
综上所述,计数排序的总时间复杂度在 O ( n + k ) O(n + k) O(n+k),其中 n n n 是输入数组的大小, k k k 是输入数据的范围(最大值与最小值之差加一)。在输入数据范围较小的情况下,计数排序是非常高效的。
1.5 空间复杂度
- 计数数组:需要额外一个大小为 k k k 的数组来存储每个元素的出现次数。
- 输出数组(如果单独分配):在重建排序后的数组时,如果分配了一个单独的输出数组,则需要额外的 n n n 个空间。但如前所述,这可以通过直接在原数组上重建来避免。
相关文章:
排序算法 -计数排序
文章目录 1. 计数排序(Counting Sort)1.1 简介1.2 计数排序的步骤1.3 计数排序C语言实现注释说明: 1.4 时间复杂度1.5 空间复杂度 1. 计数排序(Counting Sort) 1.1 简介 计数排序(Counting Sortÿ…...
Java学习,基本数据类型
变量就是申请内存来存储值,当创建变量的时候,需要在内存中申请空间。内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据。Java 提供了八种基本数据类型,这些类型可以分为四大类:整数类型…...

单片机GPIO中断+定时器 软件串口通信
单片机GPIO中断定时器 软件串口通信 解决思路代码示例 解决思路 串口波特率9600bps,每个bit约为1000000us/9600104.16us; 定时器第一次定时时间设为52us即半个bit的时间,其目的是偏移半个bit时间,之后的每104us采样并读取1bit数据。使得采样…...

elementui el-table中给表头 el-table-column 加一个鼠标移入提示说明
前言 在使用el-table 表格中有些表格的表头需要加入一些提示,鼠标移入则出现提示,非常实用,我是通过el-table中的el-tooltip实现的,以下的效果预览 代码实现 <el-table ref"multipleTable" :data"data"…...

NVR小程序接入平台/设备EasyNVR多个NVR同时管理设备接入:海康NVR 3.0提示不在线如何处理?
在视频监控领域,设备的兼容性和互操作性一直是用户关注的重点。海康NVR管理平台EasyNVR作为一款轻量级的视频监控平台,凭借其强大的兼容性、可扩展性和丰富的功能,成为了公共安全领域“云平台”解决方案的杰出代表。然而,在实际应…...
datawhale11月组队学习 模型压缩技术2:PyTorch模型剪枝教程
文章目录 一、 prune模块简介1.1 常用方法1.2 剪枝效果1.3 二、三、四章剪枝测试总结 二、局部剪枝(Local Pruning)2.1 结构化剪枝2.1.1 对weight进行随机结构化剪枝(random_structured)2.1.2 对weight进行迭代剪枝(范…...

SOL链上Meme生态的崛起与未来#Dapp开发#链游#交易所#公链搭建
近年来,随着区块链技术的普及和NFT文化的流行,meme(网络迷因)逐渐成为区块链生态中的重要组成部分。meme不仅是一种互联网文化符号,更逐步渗透进了去中心化金融(DeFi)、NFT和元宇宙等多个领域&a…...
部署Apache Doris
官方文档:https://doris.apache.org/zh-CN/installing/compilation.html 一、编译 使用 Docker 开发镜像编译(推荐) 1.拉取镜像 #下载 Docker 最新主干版本代码,会随主干版本不断更新。 $ docker pull apache/incubator-doris:…...

ElasticSearch-全文检索(一)基本介绍
简介 Elasticsearch:官方分布式搜索和分析引擎 | Elastic 全文搜索属于最常见的需求,开源的Elasticsearch是目前全文搜索引擎的首选。 它可以快速地储存、搜索和分析海量数据。维基百科、StackOverflow、Github都采用它 Elastic的底层是开源库Lucene。但…...

paramiko 库实现的暴力破解 SSH 密码
import paramiko import optparse import threading import time from threading import Thread, BoundedSemaphore# 用paramiko暴力破解SSH密码 # 最大并发连接尝试的数量,可根据实际情况调整,适当减小可降低对目标服务器的压力以及减少多线程同步问题出…...
Python 操作 Elasticsearch 全指南:从连接到数据查询与处理
文章目录 Python 操作 Elasticsearch 全指南:从连接到数据查询与处理引言安装 elasticsearch-py连接到 Elasticsearch创建索引插入数据查询数据1. 简单查询2. 布尔查询 更新文档删除文档和索引删除文档删除索引 批量插入数据处理分页结果总结 Python 操作 Elasticse…...
Jarvis March算法详解及Python实现(附设计模式案例)
目录 Jarvis March算法详解及Python实现(附设计模式案例)第一部分:Jarvis March算法概述与原理1.1 什么是Jarvis March算法?1.2 算法原理1.3 算法流程1.4 时间复杂度第二部分:Jarvis March算法的Python实现(面向对象设计)2.1 面向对象设计2.2 代码实现2.3 代码解释第三部…...
AIGC中的文本风格迁移:基于深度学习的实现
引言 文本风格迁移是自然语言处理领域的一个重要研究方向,它可以将文本从一种风格转换为另一种风格,同时保留其原有的内容。随着深度学习技术的发展,文本风格迁移的方法变得越来越先进和高效。本文将探讨基于序列到序列模型(Seq2…...

丹摩征文活动 |【前端开发】HTML+CSS+JavaScript前端三剑客的基础知识体系了解
前言 🌟🌟本期讲解关于HTMLCSSJavaScript的基础知识,小编带领大家简单过一遍~~~ 🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客 🔥 你的点赞就是小编不断更新的最大动力 …...

响应“一机两用”政策 落实政务外网安全
在数字化时代,政务办公外网安全的重要性日益凸显,特别是在“一机两用”的背景下,即同一台终端既要处理政务内网的数据,又要访问互联网,这对网络安全提出了更高的要求。深信达SPN安全上网方案,即反向沙箱技术…...

通过JS删除当前域名中的全部COOKIE教程
有时候需要通过JS来控制一下网站的登录状态,就例如:网站登出功能,我们可以直接通过JS将所有COOKIE删除,COOKIE删除之后,网站自然也就退出了。 那么今天我就给大家分享一段JS的函数,通过调用这段函数就可以实现删除COO…...
Flutter:Widget生命周期
StatelessWidget:无状态部件的生命周期 import package:flutter/material.dart;void main() {runApp(App()); }class App extends StatelessWidget {overrideWidget build(BuildContext context) {return MaterialApp(home: MyHomePage(title: MyHome),);} }class M…...

Flutter:Dio下载文件到本地
import dart:io; import package:dio/dio.dart;main(){// 创建dio对象final dio Dio();// 下载地址var url https://*******.org/files/1.0.0.apk;// 手机端路径String savePath Directory.systemTemp.path/ceshi.apk;print(savePath);downLoad(dio,url,savePath); }downLo…...

[⑧5G NR]: PBCH payload生成
本篇博客记录下5G PBCH信道中payload数据的生成方式。PBCH payload一共32个比特,基本结构如下图: 根据SSB PDU中bchPayloadFlag的值有三种方式得到PBCH payload。 bchPayloadFlag 0:全部32比特由MAC层提供。 bchPayloadFlag 1:M…...
查看解决端口占用,以及docker解决端口占用的原理
在软件开发和部署过程中,端口占用是一个常见的问题。以下是查看和解决端口占用问题的完整解决方案: 一、查看端口占用情况 1. 在 Linux 系统中 方法一:使用 lsof 命令 sudo lsof -i:<端口号>输出信息中会显示占用端口的进程名称、PI…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...

莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...