Spark RDD中常用聚合算子源码层面的对比分析
在 Spark RDD 中,groupByKey、reduceByKey、foldByKey 和 aggregateByKey 是常用的聚合算子,适用于按键进行数据分组和聚合。它们的实现方式各不相同,涉及底层调用的函数也有区别。以下是对这些算子在源码层面的分析,以及每个算子适用的场景和代码示例。
1. groupByKey
-
功能:将相同键的值分组,形成一个
(key, Iterable<values>)的 RDD。 -
源码分析:
groupByKey底层使用了combineByKeyWithClassTag方法进行数据分组。def groupByKey(): RDD[(K, Iterable[V])] = {combineByKeyWithClassTag((v: V) => mutable.ArrayBuffer(v),(c: mutable.ArrayBuffer[V], v: V) => { c += v; c },(c1: mutable.ArrayBuffer[V], c2: mutable.ArrayBuffer[V]) => { c1 ++= c2; c1 }).asInstanceOf[RDD[(K, Iterable[V])]] }- 适用场景:适合需要按键分组、无聚合的场景,但由于需要把所有键的值都传输到驱动端,数据量大时可能导致内存问题。
-
示例:
rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)]) result = rdd.groupByKey().mapValues(list) print(result.collect())输出:
[('a', [1, 3]), ('b', [2])]
2. reduceByKey
-
功能:基于给定的二元函数(如加法)对每个键的值进行聚合。
-
源码分析:
reduceByKey底层也是基于combineByKeyWithClassTag方法进行处理,但与groupByKey不同的是,它在每个分区内执行局部聚合,再进行全局聚合,减少了数据传输。def reduceByKey(func: (V, V) => V): RDD[(K, V)] = {combineByKeyWithClassTag[V]((v: V) => v, func, func) }- 适用场景:适用于需要对数据进行聚合计算的场景,能够有效减少
shuffle数据量。
- 适用场景:适用于需要对数据进行聚合计算的场景,能够有效减少
-
示例:
rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)]) result = rdd.reduceByKey(lambda x, y: x + y) print(result.collect())输出:
[('a', 4), ('b', 2)]
3. foldByKey
-
功能:与
reduceByKey类似,但提供了初始值,分区内和分区间合并时都使用这个初始值。 -
源码分析:
foldByKey的实现中调用了aggregateByKey方法,初始值会在每个分区中传递,确保聚合逻辑一致。def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)] = {aggregateByKey(zeroValue)(func, func) }- 适用场景:当聚合操作需要一个初始值时使用,如从初始值开始累积计算。
-
示例:
rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)]) result = rdd.foldByKey(0, lambda x, y: x + y) print(result.collect())输出:
[('a', 4), ('b', 2)]
4. aggregateByKey
-
功能:支持更复杂的聚合操作,提供了分区内和分区间不同的聚合函数。
-
源码分析:
aggregateByKey是最通用的聚合算子,调用了combineByKeyWithClassTag方法来控制分区内和分区间的计算方式。def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,combOp: (U, U) => U): RDD[(K, U)] = {// Implementation detail here }- 适用场景:适合复杂的聚合逻辑需求,例如在分区内和分区间使用不同的函数。
-
示例:
rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)]) result = rdd.aggregateByKey(0,lambda x, y: x + y, # 分区内加和lambda x, y: x + y) # 分区间加和 print(result.collect())输出:
[('a', 4), ('b', 2)]
区别总结
- groupByKey:按键分组返回集合,适合分组场景,但内存消耗大。
- reduceByKey:按键聚合,没有初始值,适用于聚合计算。
- foldByKey:按键聚合,支持初始值,适合自定义累加计算。
- aggregateByKey:最灵活的聚合算子,适合复杂逻辑。
相关文章:
Spark RDD中常用聚合算子源码层面的对比分析
在 Spark RDD 中,groupByKey、reduceByKey、foldByKey 和 aggregateByKey 是常用的聚合算子,适用于按键进行数据分组和聚合。它们的实现方式各不相同,涉及底层调用的函数也有区别。以下是对这些算子在源码层面的分析,以及每个算子…...
计算机网络 (6)物理层的基本概念
前言 计算机网络物理层是OSI模型(开放式系统互联模型)中的第一层,也是七层中的最底层,它涉及到计算机网络中数据的物理传输。 一、物理层的主要任务和功能 物理层的主要任务是处理物理传输介质上的原始比特流,确保数据…...
快速上手:Docker 安装详细教程(适用于 Windows、macOS、Linux)
### 快速上手:Docker 安装详细教程(适用于 Windows、macOS、Linux) --- Docker 是一款开源容器化平台,广泛应用于开发、测试和部署。本文将为您提供分步骤的 Docker 安装教程,涵盖 Windows、macOS 和 Linux 系统。 …...
kafka消费者出现频繁Rebalance
kafka消费者在正常使用过程中,突然出现了不消费消息的情况,项目里是使用了多个消费者消费不同数据,按理不会相互影响,看日志,发现消费者出现了频繁的Rebalance。 Rebalance的触发条件 组成员发生变更(新consumer加入组…...
rk3399开发环境使用Android 10初体验蓝牙功能
版本 日期 作者 变更表述 1.0 2024/11/10 于忠军 文档创建 零. 前言 由于Bluedroid的介绍文档有限,以及对Android的一些基本的知识需要了(Android 四大组件/AIDL/Framework/Binder机制/JNI/HIDL等),加上需要掌握的语言包括Java/C/C等࿰…...
ASP.NET 部署到IIS,访问其它服务器的共享文件 密码设定
asp.net 修改上面的 IIS需要在 配置文件 添加如下内容 》》》web.config <system.web><!--<identity impersonate"true"/>--><identity impersonate"true" userName"您的账号" password"您的密码" /><co…...
将自定义函数添加到MATLAB搜索路径的方法
在MATLAB中,将自定义函数添加到搜索路径可以确保你能够方便地调用这些函数,而不必每次都指定完整路径。本文介绍几种将自定义函数添加到MATLAB搜索路径的方法 文章目录 使用 MATLAB 的路径管理工具使用 addpath 命令在启动时自动添加路径使用 genpath 命…...
云原生之运维监控实践-使用Telegraf、Prometheus与Grafana实现对InfluxDB服务的监测
背景 如果你要为应用程序构建规范或用户故事,那么务必先把应用程序每个组件的监控指标考虑进来,千万不要等到项目结束或部署之前再做这件事情。——《Prometheus监控实战》 去年写了一篇在Docker环境下部署若依微服务ruoyi-cloud项目的文章,当…...
什么是MySQL,有什么特点
什么是 MySQL? MySQL 是一个关系型数据库管理系统(RDBMS),由瑞典公司 MySQL AB 开发,后来被 Sun Microsystems 收购,最终成为 Oracle Corporation 的一部分。MySQL 是最流行的关系型数据库之一,…...
初始化mysql5.7
-- 环境变量 MYSQL_HOME %MYSQL_HOME%\bin -- 新增配置文件 my.ini [mysqld] port 3306 basedir D:/develop/MySQL/mysql-5.7.44-winx64 datadir D:/develop/MySQL/mysql-5.7.44-winx64/data max_connections 200character-set-serverutf8 default-storage-engineINNODB …...
C# 字典应用
using System;using System.Collections.Generic;class Program{static void Main(){// 创建一个字典,键是字符串类型,值是整数类型Dictionary<string, int> studentScores new Dictionary<string, int>();// 向字典中添加键值对// 原理&am…...
CDH安装与配置及相关大数据组件实践
CDH安装与配置及相关大数据组件实践 一、CDH 介绍 CDH(Cloudera’s Distribution Including Apache Hadoop)是一个基于 Web 用户界面的大数据平台版本。它支持大多数 Hadoop 组件,包括 HDFS、MapReduce、Hive、Pig、HBase、Zookeeper、Sqoo…...
fastapi 调用ollama之下的sqlcoder模式进行对话操作数据库
from fastapi import FastAPI, HTTPException, Request from pydantic import BaseModel import ollama import mysql.connector from mysql.connector.cursor import MySQLCursor import jsonapp FastAPI()# 数据库连接配置 DB_CONFIG {"database": "web&quo…...
YOLO系列基础(六)YOLOv1原理详解,清晰明了!
系列文章地址 YOLO系列基础(一)卷积神经网络原理详解与基础层级结构说明-CSDN博客 YOLO系列基础(二)Bottleneck瓶颈层原理详解-CSDN博客 YOLO系列基础(三)从ResNet残差网络到C3层-CSDN博客 YOLO系列基础…...
LeetCode100之环形链表(141)--Java
1.问题描述 给你一个链表的头节点 head ,判断链表中是否有环 示例1 输入:head [3,2,0,-4], pos 1 输出:true 解释:链表中有一个环,其尾部连接到第二个节点 示例2 输入:head [1,2], pos 0 输出…...
【ict基础软件赛道】真题-50%openEuler
以下哪个命令可用于查看当前shell的后台任务在openeuler中哪个符号用于创建后台执行进程在openeuler中使用哪个命令查看软件包的详细信息在openeuler中如果想要查看本机的主机名可以使用下面哪个命令在openeuler中使用的包管理器是在openeuler系统中要配置防火墙以允许ssh连接应…...
<AI 学习> 下载 Stable Diffusions via Windows OS
注意: 不能使用 网络路径 不再支持 HTTPS 登录,需要 Token 1. 获得合法的授权 Stability AI License — Stability AI 上面的链接打开,去申请 许可 2. 拥有 HuggingFace 账号 注册:https://huggingface.co/ 3. 配置 Tok…...
计算机图形学在游戏开发中的应用
💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 计算机图形学在游戏开发中的应用 计算机图形学在游戏开发中的应用 计算机图形学在游戏开发中的应用 引言 计算机图形学的基本概念…...
【CubeMX-HAL库】STM32H743II——SDRAM配置所遇问题
推荐的博客和视频: 1、【CubeMX-HAL库】STM32H743—FMC配置SDRAM_stm32h743 sdram 速度-CSDN博客 2、【【STM32CubeMX教程】STM32全外设原理、配置和常用HAL、LL库API使用详解】 3、在百度网盘里有STM32H743的例程:【通过网盘分享的文件:S…...
mac上使用docker搭建gitlab
在 Mac 上搭建 GitLab 可以使用 Docker 来简化安装过程 一、安装详细步骤 1. 安装 Docker 如果你尚未安装 Docker,可以通过以下步骤安装: 下载并安装 Docker Desktop for Mac.安装完成后,启动 Docker Desktop,确保 Docker 运行…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
