当前位置: 首页 > news >正文

Spark RDD中常用聚合算子源码层面的对比分析

在 Spark RDD 中,groupByKeyreduceByKeyfoldByKeyaggregateByKey 是常用的聚合算子,适用于按键进行数据分组和聚合。它们的实现方式各不相同,涉及底层调用的函数也有区别。以下是对这些算子在源码层面的分析,以及每个算子适用的场景和代码示例。


1. groupByKey

  • 功能:将相同键的值分组,形成一个 (key, Iterable<values>) 的 RDD。

  • 源码分析
    groupByKey 底层使用了 combineByKeyWithClassTag 方法进行数据分组。

    def groupByKey(): RDD[(K, Iterable[V])] = {combineByKeyWithClassTag((v: V) => mutable.ArrayBuffer(v),(c: mutable.ArrayBuffer[V], v: V) => { c += v; c },(c1: mutable.ArrayBuffer[V], c2: mutable.ArrayBuffer[V]) => { c1 ++= c2; c1 }).asInstanceOf[RDD[(K, Iterable[V])]]
    }
    
    • 适用场景:适合需要按键分组、无聚合的场景,但由于需要把所有键的值都传输到驱动端,数据量大时可能导致内存问题。
  • 示例

    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.groupByKey().mapValues(list)
    print(result.collect())
    

    输出[('a', [1, 3]), ('b', [2])]


2. reduceByKey

  • 功能:基于给定的二元函数(如加法)对每个键的值进行聚合。

  • 源码分析
    reduceByKey 底层也是基于 combineByKeyWithClassTag 方法进行处理,但与 groupByKey 不同的是,它在每个分区内执行局部聚合,再进行全局聚合,减少了数据传输。

    def reduceByKey(func: (V, V) => V): RDD[(K, V)] = {combineByKeyWithClassTag[V]((v: V) => v, func, func)
    }
    
    • 适用场景:适用于需要对数据进行聚合计算的场景,能够有效减少 shuffle 数据量。
  • 示例

    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.reduceByKey(lambda x, y: x + y)
    print(result.collect())
    

    输出[('a', 4), ('b', 2)]


3. foldByKey

  • 功能:与 reduceByKey 类似,但提供了初始值,分区内和分区间合并时都使用这个初始值。

  • 源码分析
    foldByKey 的实现中调用了 aggregateByKey 方法,初始值会在每个分区中传递,确保聚合逻辑一致。

    def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)] = {aggregateByKey(zeroValue)(func, func)
    }
    
    • 适用场景:当聚合操作需要一个初始值时使用,如从初始值开始累积计算。
  • 示例

    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.foldByKey(0, lambda x, y: x + y)
    print(result.collect())
    

    输出[('a', 4), ('b', 2)]


4. aggregateByKey

  • 功能:支持更复杂的聚合操作,提供了分区内和分区间不同的聚合函数。

  • 源码分析
    aggregateByKey 是最通用的聚合算子,调用了 combineByKeyWithClassTag 方法来控制分区内和分区间的计算方式。

    def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,combOp: (U, U) => U): RDD[(K, U)] = {// Implementation detail here
    }
    
    • 适用场景:适合复杂的聚合逻辑需求,例如在分区内和分区间使用不同的函数。
  • 示例

    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.aggregateByKey(0,lambda x, y: x + y,   # 分区内加和lambda x, y: x + y)   # 分区间加和
    print(result.collect())
    

    输出[('a', 4), ('b', 2)]


区别总结

  • groupByKey:按键分组返回集合,适合分组场景,但内存消耗大。
  • reduceByKey:按键聚合,没有初始值,适用于聚合计算。
  • foldByKey:按键聚合,支持初始值,适合自定义累加计算。
  • aggregateByKey:最灵活的聚合算子,适合复杂逻辑。

相关文章:

Spark RDD中常用聚合算子源码层面的对比分析

在 Spark RDD 中&#xff0c;groupByKey、reduceByKey、foldByKey 和 aggregateByKey 是常用的聚合算子&#xff0c;适用于按键进行数据分组和聚合。它们的实现方式各不相同&#xff0c;涉及底层调用的函数也有区别。以下是对这些算子在源码层面的分析&#xff0c;以及每个算子…...

计算机网络 (6)物理层的基本概念

前言 计算机网络物理层是OSI模型&#xff08;开放式系统互联模型&#xff09;中的第一层&#xff0c;也是七层中的最底层&#xff0c;它涉及到计算机网络中数据的物理传输。 一、物理层的主要任务和功能 物理层的主要任务是处理物理传输介质上的原始比特流&#xff0c;确保数据…...

快速上手:Docker 安装详细教程(适用于 Windows、macOS、Linux)

### 快速上手&#xff1a;Docker 安装详细教程&#xff08;适用于 Windows、macOS、Linux&#xff09; --- Docker 是一款开源容器化平台&#xff0c;广泛应用于开发、测试和部署。本文将为您提供分步骤的 Docker 安装教程&#xff0c;涵盖 Windows、macOS 和 Linux 系统。 …...

kafka消费者出现频繁Rebalance

kafka消费者在正常使用过程中&#xff0c;突然出现了不消费消息的情况&#xff0c;项目里是使用了多个消费者消费不同数据&#xff0c;按理不会相互影响&#xff0c;看日志&#xff0c;发现消费者出现了频繁的Rebalance。 Rebalance的触发条件 组成员发生变更(新consumer加入组…...

rk3399开发环境使用Android 10初体验蓝牙功能

版本 日期 作者 变更表述 1.0 2024/11/10 于忠军 文档创建 零. 前言 由于Bluedroid的介绍文档有限&#xff0c;以及对Android的一些基本的知识需要了(Android 四大组件/AIDL/Framework/Binder机制/JNI/HIDL等)&#xff0c;加上需要掌握的语言包括Java/C/C等&#xff0…...

ASP.NET 部署到IIS,访问其它服务器的共享文件 密码设定

asp.net 修改上面的 IIS需要在 配置文件 添加如下内容 》》》web.config <system.web><!--<identity impersonate"true"/>--><identity impersonate"true" userName"您的账号" password"您的密码" /><co…...

将自定义函数添加到MATLAB搜索路径的方法

在MATLAB中&#xff0c;将自定义函数添加到搜索路径可以确保你能够方便地调用这些函数&#xff0c;而不必每次都指定完整路径。本文介绍几种将自定义函数添加到MATLAB搜索路径的方法 文章目录 使用 MATLAB 的路径管理工具使用 addpath 命令在启动时自动添加路径使用 genpath 命…...

云原生之运维监控实践-使用Telegraf、Prometheus与Grafana实现对InfluxDB服务的监测

背景 如果你要为应用程序构建规范或用户故事&#xff0c;那么务必先把应用程序每个组件的监控指标考虑进来&#xff0c;千万不要等到项目结束或部署之前再做这件事情。——《Prometheus监控实战》 去年写了一篇在Docker环境下部署若依微服务ruoyi-cloud项目的文章&#xff0c;当…...

什么是MySQL,有什么特点

什么是 MySQL&#xff1f; MySQL 是一个关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;由瑞典公司 MySQL AB 开发&#xff0c;后来被 Sun Microsystems 收购&#xff0c;最终成为 Oracle Corporation 的一部分。MySQL 是最流行的关系型数据库之一&#xff0c…...

初始化mysql5.7

-- 环境变量 MYSQL_HOME %MYSQL_HOME%\bin -- 新增配置文件 my.ini [mysqld] port 3306 basedir D:/develop/MySQL/mysql-5.7.44-winx64 datadir D:/develop/MySQL/mysql-5.7.44-winx64/data max_connections 200character-set-serverutf8 default-storage-engineINNODB …...

C# 字典应用

using System;using System.Collections.Generic;class Program{static void Main(){// 创建一个字典&#xff0c;键是字符串类型&#xff0c;值是整数类型Dictionary<string, int> studentScores new Dictionary<string, int>();// 向字典中添加键值对// 原理&am…...

CDH安装与配置及相关大数据组件实践

CDH安装与配置及相关大数据组件实践 一、CDH 介绍 CDH&#xff08;Cloudera’s Distribution Including Apache Hadoop&#xff09;是一个基于 Web 用户界面的大数据平台版本。它支持大多数 Hadoop 组件&#xff0c;包括 HDFS、MapReduce、Hive、Pig、HBase、Zookeeper、Sqoo…...

fastapi 调用ollama之下的sqlcoder模式进行对话操作数据库

from fastapi import FastAPI, HTTPException, Request from pydantic import BaseModel import ollama import mysql.connector from mysql.connector.cursor import MySQLCursor import jsonapp FastAPI()# 数据库连接配置 DB_CONFIG {"database": "web&quo…...

YOLO系列基础(六)YOLOv1原理详解,清晰明了!

系列文章地址 YOLO系列基础&#xff08;一&#xff09;卷积神经网络原理详解与基础层级结构说明-CSDN博客 YOLO系列基础&#xff08;二&#xff09;Bottleneck瓶颈层原理详解-CSDN博客 YOLO系列基础&#xff08;三&#xff09;从ResNet残差网络到C3层-CSDN博客 YOLO系列基础…...

LeetCode100之环形链表(141)--Java

1.问题描述 给你一个链表的头节点 head &#xff0c;判断链表中是否有环 示例1 输入&#xff1a;head [3,2,0,-4], pos 1 输出&#xff1a;true 解释&#xff1a;链表中有一个环&#xff0c;其尾部连接到第二个节点 示例2 输入&#xff1a;head [1,2], pos 0 输出&#xf…...

【ict基础软件赛道】真题-50%openEuler

以下哪个命令可用于查看当前shell的后台任务在openeuler中哪个符号用于创建后台执行进程在openeuler中使用哪个命令查看软件包的详细信息在openeuler中如果想要查看本机的主机名可以使用下面哪个命令在openeuler中使用的包管理器是在openeuler系统中要配置防火墙以允许ssh连接应…...

<AI 学习> 下载 Stable Diffusions via Windows OS

注意&#xff1a; 不能使用 网络路径 不再支持 HTTPS 登录&#xff0c;需要 Token 1. 获得合法的授权 Stability AI License — Stability AI 上面的链接打开&#xff0c;去申请 许可 2. 拥有 HuggingFace 账号 注册&#xff1a;https://huggingface.co/ 3. 配置 Tok…...

计算机图形学在游戏开发中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 计算机图形学在游戏开发中的应用 计算机图形学在游戏开发中的应用 计算机图形学在游戏开发中的应用 引言 计算机图形学的基本概念…...

【CubeMX-HAL库】STM32H743II——SDRAM配置所遇问题

推荐的博客和视频&#xff1a; 1、【CubeMX-HAL库】STM32H743—FMC配置SDRAM_stm32h743 sdram 速度-CSDN博客 2、【【STM32CubeMX教程】STM32全外设原理、配置和常用HAL、LL库API使用详解】 3、在百度网盘里有STM32H743的例程&#xff1a;【通过网盘分享的文件&#xff1a;S…...

mac上使用docker搭建gitlab

在 Mac 上搭建 GitLab 可以使用 Docker 来简化安装过程 一、安装详细步骤 1. 安装 Docker 如果你尚未安装 Docker&#xff0c;可以通过以下步骤安装&#xff1a; 下载并安装 Docker Desktop for Mac.安装完成后&#xff0c;启动 Docker Desktop&#xff0c;确保 Docker 运行…...

二维数组操作

代码结构 main.c #include <stdio.h> #include <stdlib.h>#define LEN 100int main() {//通过指针引用多维数组# if 1//定义多维数组int a[3][5] {{1,2,3,4}, {5,6,7,8}, {9,10,11,12}};int row sizeof(a) /sizeof(a[0]);int colum sizeof(a[0]) / sizeof(a[0…...

uniapp设置tabBar高斯模糊并设置tabBar高度占位

1、设置tabBar高斯模糊 2、设置tabBar高度占位 &#xff08;1&#xff09;需要先在App.vue中获取一下 uni.getSystemInfoSync().windowBottom; //返回值是tabBar的高度&#xff08;2&#xff09;在app.vue中定义一个全局样式 3、在需要的页面底部&#xff0c;加上一个view&…...

上市公司代理成本数据大全(第一类和第二类代理成本均有)1991-2023年

一、计算方式&#xff1a; &#xff08;1&#xff09; 第一类代理成本 AC1:经营费用率&#xff0c;参考顶刊《管理世界》李文贵和余明桂(2015)老师的研究构建代理成本 AC2:管理费用率&#xff0c;参考C刊《经济管理》彭雅哲和汪昌云(2021) 老师的研究构建代理成本 AC3:资产周转…...

CA-Markov模型概述及其MATLAB实现

CA-Markov模型概述及其MATLAB实现 1 Markov模型2 CA-Markov模型2.1 元胞自动机(Cellular Aumatomata, 简称CA)2.1.1 构成2.2 准确度评估(Accuracy assessment)2.2.1 Kappa coefficient参考1.参考文献2.其它参考资料1 Markov模型 Markov模型是一种数学模型,用于描述系统在不…...

《生成式 AI》课程 第3講 CODE TASK执行文章摘要的机器人

课程 《生成式 AI》课程 第3講&#xff1a;訓練不了人工智慧嗎&#xff1f;你可以訓練你自己-CSDN博客 任务1:总结 1.我们希望你创建一个可以执行文章摘要的机器人。 2.设计一个提示符&#xff0c;使语言模型能够对文章进行总结。 model: gpt-4o-mini,#gpt-3.5-turbo, import…...

HCIP-HarmonyOS Application Developer 习题(二十二)

1、用户将手机导航迁移至智能手表之后&#xff0c;智能手表如果需要获取手机传过来的数据&#xff0c;从下列哪个方法中获取? A、onCompleteContinuation() B、onStartContinuation() C、onRestoreData() D、onSaveData() 答案&#xff1a;C 分析&#xff1a;FA发起迁移后&am…...

c++原型模式(Prototype Pattern)

原型模式&#xff08;Prototype Pattern&#xff09; 原型模式是一种创建型设计模式&#xff0c;它允许你通过复制现有对象来创建新的对象&#xff0c;而不是通过类实例化来创建对象。这种模式在开发时需要大量类似对象的情况下非常有用。原型模式的核心是一个具有克隆方法的接…...

联通大数据面试题及参考答案

Flink 是怎么使用的? Flink 是一个分布式流批一体的开源平台,以下是其一般使用步骤及相关要点: 环境搭建 首先要根据需求选择合适的部署模式,比如本地模式用于开发测试,集群模式(如 Standalone、YARN、Kubernetes 等)用于生产环境。安装相应的 JDK 版本(Flink 基于 Ja…...

MySQL数据库:SQL语言入门 【3】(学习笔记)

目录 5&#xff0c;TCL —— 事务控制语言&#xff08;Transaction Control Language&#xff09; &#xff08;1&#xff09;事务的概念作用 &#xff08;2&#xff09;事务的特性 【1】原子性 【2】一致性 【3】隔离性 【4】持久性 &#xff08;3&#xff09;并发事务带来…...

uniapp 实现tabbar分类导航及滚动联动效果

思路&#xff1a;使用两个scroll-view&#xff0c;tabbar分类导航使用scrollleft移动&#xff0c;内容联动使用页面滚动onPageScroll监听滚动高度 效果图 <template><view class"content" ><view :class"[isSticky ? tab-sticky: ]">…...