当前位置: 首页 > news >正文

计算机视觉中的双边滤波:经典案例与Python代码解析

🌟 计算机视觉中的双边滤波:经典案例与Python代码解析 🚀

Hey小伙伴们!今天我们要聊的是计算机视觉中的一个重要技术——双边滤波。双边滤波是一种非线性滤波方法,主要用于图像去噪和平滑,同时保留图像的边缘和细节。通过双边滤波,我们可以显著改善图像的质量。让我们一起来看看如何使用Python实现双边滤波吧!🎉


📝 理论篇:双边滤波的基本原理

双边滤波是一种结合了空间距离和像素强度差异的滤波方法。它通过以下两个权重来计算新的像素值:

  1. 空间权重:根据像素之间的空间距离计算权重。
  2. 强度权重:根据像素之间的强度差异计算权重。

双边滤波的公式如下:

f ( i , j ) = ∑ ( x , y ) ∈ N ( i , j ) I ( x , y ) ⋅ w s ( i , j , x , y ) ⋅ w r ( I ( i , j ) , I ( x , y ) ) ∑ ( x , y ) ∈ N ( i , j ) w s ( i , j , x , y ) ⋅ w r ( I ( i , j ) , I ( x , y ) ) f(i, j) = \frac{\sum_{(x, y) \in N(i, j)} I(x, y) \cdot w_s(i, j, x, y) \cdot w_r(I(i, j), I(x, y))}{\sum_{(x, y) \in N(i, j)} w_s(i, j, x, y) \cdot w_r(I(i, j), I(x, y))} f(i,j)=(x,y)N(i,j)ws(i,j,x,y)wr(I(i,j),I(x,y))(x,y)N(i,j)I(x,y)ws(i,j,x,y)wr(I(i,j),I(x,y))

其中:

  • f(i, j) 是新像素值。
  • I(i, j) 是原图像中的像素值。
  • N(i, j) 是邻域窗口。
  • w_s(i, j, x, y) 是空间权重。
  • w_r(I(i, j), I(x, y)) 是强度权重。

1. 空间权重

w s ( i , j , x , y ) = exp ⁡ ( − ( i − x ) 2 + ( j − y ) 2 2 σ d 2 ) w_s(i, j, x, y) = \exp\left(-\frac{(i - x)^2 + (j - y)^2}{2\sigma_d^2}\right) ws(i,j,x,y)=exp(2σd2(ix)2+(jy)2)

2. 强度权重

w r ( I ( i , j ) , I ( x , y ) ) = exp ⁡ ( − ( I ( i , j ) − I ( x , y ) ) 2 2 σ r 2 ) w_r(I(i, j), I(x, y)) = \exp\left(-\frac{(I(i, j) - I(x, y))^2}{2\sigma_r^2}\right) wr(I(i,j),I(x,y))=exp(2σr2(I(i,j)I(x,y))2)


📑 实战篇:使用Python实现双边滤波

接下来,我们通过一个具体的Python示例来实现双边滤波。我们将使用OpenCV库来处理图像,并使用NumPy进行矩阵运算。

1. 安装必要的库

首先,确保你已经安装了OpenCV和NumPy:

pip install opencv-python numpy
2. 读取和显示图像

我们先读取一张图像并显示它:

import cv2
import numpy as np# 读取图像
image = cv2.imread('path_to_your_image.jpg')# 显示原始图像
cv2.imshow('Original Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
3. 双边滤波

使用OpenCV的 bilateralFilter 函数进行双边滤波:

def bilateral_filter(image, d, sigma_color, sigma_space):# 使用OpenCV的bilateralFilter函数进行双边滤波filtered_image = cv2.bilateralFilter(image, d, sigma_color, sigma_space)return filtered_image# 应用双边滤波
filtered_image = bilateral_filter(image, d=9, sigma_color=75, sigma_space=75)# 显示滤波后的图像
cv2.imshow('Bilateral Filtered Image', filtered_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
4. 完整代码

将上述步骤整合在一起,完整的代码如下:

import cv2
import numpy as np# 读取图像
image = cv2.imread('path_to_your_image.jpg')# 显示原始图像
cv2.imshow('Original Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()# 双边滤波
def bilateral_filter(image, d, sigma_color, sigma_space):# 使用OpenCV的bilateralFilter函数进行双边滤波filtered_image = cv2.bilateralFilter(image, d, sigma_color, sigma_space)return filtered_image# 应用双边滤波
filtered_image = bilateral_filter(image, d=9, sigma_color=75, sigma_space=75)# 显示滤波后的图像
cv2.imshow('Bilateral Filtered Image', filtered_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

🌟 成功案例

当你运行这段代码时,你会看到原始图像和双边滤波后的图像。双边滤波有效地去除了图像中的噪声,同时保留了图像的边缘和细节。


运行效果

在这里插入图片描述
在这里插入图片描述

🌟 小贴士
  • 参数选择

    • d:滤波器的空间直径。值越大,滤波效果越强。
    • sigma_color:颜色空间的标准差。值越大,颜色差异的影响越小。
    • sigma_space:空间域的标准差。值越大,空间距离的影响越小。
  • 多尺度处理:结合不同参数的双边滤波器,可以在多尺度上进行图像处理,提高效果。


🚀 结语

通过今天的实战演练,大家已经掌握了如何使用Python和OpenCV实现双边滤波。双边滤波是计算机视觉中非常基础但重要的技术,可以应用于图像去噪、增强和分析等多个领域。如果你有任何问题或想法,欢迎留言交流。我们下次再见!👋


标签:#计算机视觉 #Python编程 #双边滤波 #图像处理 #OpenCV #NumPy

相关文章:

计算机视觉中的双边滤波:经典案例与Python代码解析

🌟 计算机视觉中的双边滤波:经典案例与Python代码解析 🚀 Hey小伙伴们!今天我们要聊的是计算机视觉中的一个重要技术——双边滤波。双边滤波是一种非线性滤波方法,主要用于图像去噪和平滑,同时保留图像的边…...

【AI日记】24.11.17 看 GraphRAG 论文,了解月之暗面

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】 核心工作 内容:看 GraphRAG 论文时间:4 小时评估:不错,继续 非核心工作 内容:了解国内大模型方向,重点了解了创业独角兽-月之暗面&…...

Front Panel Window Bounds 与 Front Panel Window Bounds 的区别与应用

在LabVIEW中,Front Panel Window Bounds 和 Front Panel WindowBounds 是两个不同的属性节点,用于描述前面板窗口的位置和大小。它们的区别主要体现在它们表示的是窗口的不同部分,具体如下: 1 Window Bounds:调整整个…...

比较TCP/IP和OSI/RM的区别

一、结构不同 1、OSI:OSI划分为7层结构:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。 2、TCP/IP:TCP/IP划分为4层结构:应用层、传输层、互联网络层和主机-网络层。 二、性质不同 1、OSI:OSI是制定…...

【Java项目】基于SpringBoot的【招聘信息管理系统】

技术简介:系统软件架构选择B/S模式、SpringBoot框架、java技术和MySQL数据库等,总体功能模块运用自顶向下的分层思想。 系统简介:招聘信息管理系统的功能分为管理员,用户和企业三个部分,系统的主要功能包括首页、个人中…...

【论文笔记】LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models

🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: LLaMA-VID: An Image is W…...

使用Web Storage API实现客户端数据持久化

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 使用Web Storage API实现客户端数据持久化 使用Web Storage API实现客户端数据持久化 使用Web Storage API实现客户端数据持久化…...

基于STM32F103的秒表设计-液晶显示

基于STM32F103的秒表设计-液晶显示 仿真软件: Proteus 8.17 编程软件: Keil 5 仿真实现: 在液晶1602上进行秒表显示,每100ms改变一次数值,一共三个按键,分为启动按键、暂停按键、复位按键。 电路介绍: 前面章节里已经和大家介绍了使用数码管设计的秒表,本次仿真将数…...

ReentrantLock的具体实现细节是什么

在 JDK 1.5 之前共享对象的协调机制只有 synchronized 和 volatile,在 JDK 1.5 中增加了新的机制 ReentrantLock,该机制的诞生并不是为了替代 synchronized,而是在 synchronized 不适用的情况下,提供一种可以选择的高级功能。 在 Java 中每个对象都隐式包含一个 monitor(监…...

【JavaScript】this 指向

1、this 指向谁 多数情况下,this 指向调用它所在方法的那个对象。即谁调的函数,this 就归谁。 当调用方法没有明确对象时,this 就指向全局对象。在浏览器中,指向 window;在 Node 中,指向 Global。&#x…...

DB Type

P位 p 1时段描述符有效,p 0时段描述符无效 Base Base被分成了三个部分,按照实际拼接即可 G位 如果G 0 说明描述符中Limit的单位是字节,如果是G 1 ,那么limit的描述的单位是页也就是4kb S位 S 1 表示代码段或者数据段描…...

python-返回函数

Python的函数不但可以返回int、str、list、dict等数据类型,还可以返回函数! 例如,定义一个函数 f(),我们让它返回一个函数 g,可以这样写: def f()&#xff…...

python语言基础-5 进阶语法-5.2 装饰器-5.2.1 闭包

声明:本内容非盈利性质,也不支持任何组织或个人将其用作盈利用途。本内容来源于参考书或网站,会尽量附上原文链接,并鼓励大家看原文。侵删。 5.2 装饰器 python中的装饰器相当于java中的注解。装饰器用于为函数添加某些修饰性、…...

用vscode编写verilog时,如何有信号定义提示、信号定义跳转(go to definition)、模块跳转(跨文件跳转)这些功能

(一)方法一:安装插件SystemVerilog - Language Support 安装一个vscode插件即可,插件叫SystemVerilog - Language Support。虽然说另一个插件“Verilog-HDL/SystemVerilog/Bluespec SystemVerilog”也有信号提示及定义跳转功能&am…...

MQTT+Springboot整合

1.mqttconfig配置(配置参数是从数据库查出来的) package com.terminal.dc3.api.center.manager.config;import com.collection.common.utils.StringUtils; import com.collection.system.mapper.MqttConfigMapper; import lombok.Data; import org.springframework.beans.fact…...

ERROR TypeError: AutoImport is not a function

TypeError: AutoImport is not a function 原因:unplugin-auto-import 插件版本问题 Vue3基于Webpack,在vue.config.js中配置 当unplugin-vue-components版本小于0.26.0时,使用以下写法 const { defineConfig } require("vue/cli-se…...

软考教材重点内容 信息安全工程师 第 3 章 密码学基本理论

(本章相对老版本极大的简化,所有与算法相关的计算全部删除,因此考试需要了解各个常 用算法的基本参数以及考试中可能存在的古典密码算法的计算,典型的例子是 2021 和 2022 年分别考了 DES 算法中的 S 盒计算,RSA 中的已…...

微信小程序 https://thirdwx.qlogo.cn 不在以下 downloadFile 合法域名列表中

授权登录后,拿到用户头像进行加载,但报错提示: https://thirdwx.qlogo.cn 不在以下 downloadFile 合法域名列表中 解决方法一(未完全解决,临时处理):在微信开发者工具将不校验...勾上就可以访问…...

Linux性能优化之火焰图的起源

Linux火焰图的起源与性能优化专家 Brendan Gregg 密切相关,他在 2011 年首次提出这一工具,用于解决性能分析过程中可视化和数据解读的难题。 1. 背景:性能优化的需求 在现代计算中,性能优化往往需要对程序执行中的热点和瓶颈进行…...

《Markdown语法入门》

文章目录 《Markdown语法入门》1.标题2.段落2.1 换行2.2分割线 3.文字显示3.1 字体3.2 上下标 4. 列表4.1无序列表4.2 有序列表4.3 任务列表 5. 区块显示6. 代码显示6.1 行内代码6.2 代码块 7.插入超链接8.插入图片9. 插入表格 《Markdown语法入门》 【Typora 教程】手把手教你…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...