Ubuntu下的Eigen库的安装及基本使用教程
一、Eigen库介绍
简介
Eigen [1]目前最新的版本是3.4,除了C++标准库以外,不需要任何其他的依赖包。Eigen使用的CMake建立配置文件和单元测试,并自动安装。如果使用Eigen库,只需包特定模块的的头文件即可。
基本功能
Eigen适用范围广,支持包括固定大小、任意大小的所有矩阵操作,甚至是稀疏矩阵;支持所有标准的数值类型,并且可以扩展为自定义的数值类型;支持多种矩阵分解及其几何特征的求解;它不支持的模块生态系统 [2]提供了许多专门的功能,如非线性优化,矩阵功能,多项式解算器,快速傅立叶变换等。
Eigen支持多种编译环境,开发人员对库中的实例在多种编译环境下经过测试,以保证其在不同编译环境下的可靠性和实用性。
介绍来之百度百科,点这里
二、Eigen库的下载及安装
进入官方下载路径,点这里
下载eigen-3.4.0.tar.gz到本地,解压
tar -xzf eigen-3.4.0.tar.gz
编译项目
# 进入eigen源码目录
cd eigen-3.4.0
# 创建文件夹build-编译用
mkdir build
# 进入build
cd build
# 开始构建
cmake ..
安装项目
# 执行安装 - 注意这里不需要make,原因前面解释过eigen是模式式编程
# 不需要真正的编译,只需要把头文件安装到系统include目录即可
make install
上面命令执行后,默认安装 Eigen采用源码的方式提供给用户使用,在使用时只需要包含Eigen的头文件即可进行使用。之所以采用这种方式,是因为Eigen采用模板方式实现,由于模板函数不支持分离编译,所以只能提供源码而不是动态库的方式供用户使用。到/usr/local/include/
目录
三、Eigen基本使用
引入Eigen库
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Dense>
1、定义矩阵、基本访问、为矩阵赋值、重置矩阵
// 1. 定义矩阵
Eigen::MatrixXd m(2,2);
Eigen::Vector3d vec3d;
Eigen::Vector4d vec4d(1.0, 2.0, 3.0, 4.0);// Matrix创建的矩阵默认是按列存储,Eigen在处理按列存储的矩阵时会更加高效,可通过如下方法修改优先存储方式
Matrix<int,3, 4, ColMajor> Acolmajor;
Matrix<int,3, 4, RowMajor> Arowmajor;// 2. 定义动态矩阵、静态矩阵
Eigen::MatrixXd matrixXd; // 动态矩阵,通过mat.resise()重新修改矩阵大小
Eigen::Matrix3d matrix3d;// 3. 矩阵元素的访问
m(0, 0) = 1;
m(0, 1) = 2;
m(1, 0) = m(0, 0) + 3;
m(1, 1) = m(0, 0) * m(0, 1);
cout << m << endl << endl;// 4. 设置矩阵的元素
m << -5.5, 3.1,5.9, 1.0;
cout << m << endl << endl;
int row = 4;
int col = 5;
Eigen::MatrixXf matrixXf(row, col);
matrixXf << 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20;
cout << matrixXf << endl << endl;// 5. 重置矩阵
Eigen::MatrixXd matrixXd1(4,4);
cout << "原m的行列为:" << m.rows() << " , " << m.cols() << endl << endl;
m.resize(5,100); // 通过resize修改矩阵大小
cout << "新1的m行列为:" << m.rows() << " , " << m.cols() << endl << endl;
m = matrixXd1; // 通过直接赋值新矩阵,修改矩阵大小
cout << "新2的m行列为:" << m.rows() << " , " << m.cols() << endl << endl;
2、常用矩阵、及常用的基本矩阵运算
常用特殊矩阵:0矩阵、1矩阵、单位矩阵、随机矩阵
常用的矩阵运算:转置、共轭、共轭转置、求逆、求迹、求行列式、求模、求和、求均值、求乘积、求最小、求最大
点乘、叉乘
// 1. 其他常用特殊的矩阵
Eigen::Matrix3d m3;
m3 = Eigen::Matrix3d::Zero();
cout << "Zero() : " << endl << m3 << endl << endl;m3 = Eigen::Matrix3d::Identity();
cout << "Identity() : " << endl << m3 << endl << endl;m3 = Eigen::Matrix3d::Random();
cout << "Random() : " << endl << m3 << endl << endl;// 2. 直接设置为常用特殊矩阵
m3.setRandom(); // 随机矩阵
m3.setOnes(); // 全1矩阵
m3.setZero(); // 全0矩阵
m3.setIdentity(); // 单位矩阵// 3. 矩阵的运算1
Eigen::Matrix3d new_m3;
new_m3 = m3.transpose();
cout << "============================================" << endl << endl;
cout << "m3.transpose() - 转置: " << endl << new_m3 << endl << endl;new_m3 = m3.conjugate();
cout << "m3.conjugate() - 共轭: " << endl << new_m3 << endl << endl;new_m3 = m3.adjoint();
cout << "m3.adjoint() - 伴随矩阵(共轭转置): " << endl << new_m3 << endl << endl;
// 对于实数矩阵,conjugate不执行任何操作,adjoint等价于transposecout << "m3.inverse() - 求逆: " << endl << m3.inverse(); << endl << endl;
cout << "m3.trace() - 求迹: " << endl << m3.trace() << endl << endl;
cout << "m3.determinant() - 求行列式: " << endl << m3.determinant() << endl << endl;
cout << "m3.norm() - 求模: " << endl << m3.norm() << endl << endl;
cout << "m3.sum() - 求和: " << endl << m3.sum() << endl << endl;
cout << "m3.mean() - 求均值: " << endl << m3.mean() << endl << endl;
cout << "m3.prod() - 求乘积: " << endl << m3.prod() << endl << endl;
cout << "m3.minCoeff() - 求最小: " << endl << m3.minCoeff() << endl << endl;
cout << "m3.maxCoeff() - 求最大: " << endl << m3.maxCoeff() << endl << endl;// 3. 矩阵的运算2
Eigen::Vector3d v1(1, 2, 3);
Eigen::Vector3d v2(2, 1, 2);// 点乘
double a;
a = v1.dot(v2);
cout << "v1.dot(v2) - 点乘: " << endl << a << endl << endl;// 叉乘
cout << "v1.cross(v2) - 叉乘: " << endl << v1.cross(v2) << endl << endl;
四、Eigen的应用
1、求矩阵的特征值及特征向量
// 求解特征值及特征向量
Eigen::Matrix2f matrix2f;
matrix2f << 1, 2, 3, 4;
Eigen::SelfAdjointEigenSolver<Eigen::Matrix2f> eigenSolver(matrix2f);
cout<< "SelfAdjointEigenSolver: " << eigenSolver.info() << endl;
if (eigenSolver.info() == Eigen::Success ) {cout << eigenSolver.eigenvalues() << endl << endl;cout << eigenSolver.eigenvectors() << endl << endl;
}
2、求解线性方程组Ax=b
方法一:直接法求线性方程组(求逆法)
const int n = 4;
Eigen::Matrix<double, n, n > A;
A = A.Random() * 10;
Eigen::Matrix<double, n, 1> b;
b = b.Random() * 10;// 定义未知x
Eigen::Matrix<double, n, 1> x;
x = A.inverse() * b; // 直接取逆 (这种效率很低,不推荐使用)
cout << "A=" << endl << A << endl << "b=" << b << endl << endl;
cout << "x=" << x << endl << endl;
注意上面例子,直接求逆法是低效的,一般情况不推荐选择求逆法,且直接对A.inverse(),可能会取逆失败,无法完成A.inverse()*b的运算操作
方法二:QR分解法(推荐)
// const int n = 4;
// Eigen::Matrix<double, n, n > A;
// A = A.Random() * 10;
// Eigen::Matrix<double, n, 1> b;
// b = b.Random() * 10;// case-1:使用前面的A、b矩阵,定义未知x2
Eigen::Matrix<double, n, 1> x2;
x2 = A.colPivHouseholderQr().solve(b);
cout << "QR分解法" <<endl;
cout << "x=" << x2 << endl << endl;// case-2:当然有时为了使用QR分解对象,也可以用下面方法计算,
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> qrDec(A);
x = qrDec.solve(b);// case-3 或者采用分离式分布构造
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> qrDec2; // 只声明,不待入参,并不立即构造分解
qrDec2.compute(A); // 执行计算进行分解
x = qrDec2.solve(b); // 求解
上面三种使用方法,任取一种即可
3、如何评估或计算解的精度
// 继续前面的计算,我们可以采用下面的方式计算精度
double relative_error = (A*x - b).norm() / b.norm();
std::cout << "The relative error is:\n" << relative_error << std::endl;
4、求矩阵的秩
计算秩,通常是使用各类分解算法提供的rank()方法计算,Eigen中的许多分解算法,都提供了rank()求秩
Eigen::MatrixXd A(3,3);
A << 1, 2, 5,2, 1, 4,3, 0, 3;
cout << "A=" << endl << A << endl << endl;
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> qrDec;
// 分解
qrDec.compute(A);
// 计算秩
cout<< "A rank = " << endl << qrDec.rank() << endl << endl;
任何算法的秩的计算根据设置的阈值来进行的,也就是设置不同的阈值,对结果将造成影响;Eigen中秩的计算依赖于分解方法的阈值,并不是矩阵对角大小乘以机器的精度epsilon,可通过调用
dec.setThreshold(th_val)
设置;且注意,分解算法并不会依赖阈值的设定,也就是执行完成分解后,任可以任意设置阈值,并求解rank()得到正确的秩;
Eigen库提供了多种求解线性方程组的算法,如下所示
参考地址,点这里
在实际问题处理中,如何选择不同的方法,对求解效率将会较大的影响,可根据系数矩阵A的特征,选择不同的分解算法:
- 如果系数矩阵是对于非对称、满秩的,则最适合的分解求解方法是PartialPivLU.
- 如果系数矩阵是对称正定的,则最适合的分解方法是 LLT 或LDLT
各类算法的求解效率对比可参考如下:
参考地址,点这里
相关文章:

Ubuntu下的Eigen库的安装及基本使用教程
一、Eigen库介绍 简介 Eigen [1]目前最新的版本是3.4,除了C标准库以外,不需要任何其他的依赖包。Eigen使用的CMake建立配置文件和单元测试,并自动安装。如果使用Eigen库,只需包特定模块的的头文件即可。 基本功能 Eigen适用范…...

【spring 】Spring Cloud Gateway 的Filter学习
介绍和使用场景 Spring Cloud Gateway 是一个基于 Spring Framework 5 和 Project Reactor 的 API 网关,它旨在为微服务架构提供一种简单而有效的方式来处理请求路由、过滤、限流等功能。在 Spring Cloud Gateway 中,Filter 扮演着非常重要的角色&#…...

每秒交易数(Transactions Per Second:TPS)详细拆解
每秒交易数(TPS)是指计算机网络每秒可以处理的交易数量。TPS是衡量不同区块链和其他计算机系统速度的关键指标。然而,TPS并不是用来衡量区块链速度的唯一指标。许多人认为,虽然TPS很重要,但最终性实际上是一个更重要的…...

【初阶数据结构与算法】链表刷题之链表分割、相交链表、环形链表1、环形链表I、环形链表II
文章目录 一、链表分割二、相交链表三、环形链表I四、环形链表|| 一、链表分割 题目链接:https://www.nowcoder.com/practice/0e27e0b064de4eacac178676ef9c9d70 我们来看看链表分割的题目描述和它给出的函数: 这个题虽然是以C形式来做࿰…...

【STL】set,multiset,map,multimap的介绍以及使用
关联式容器 在C的STL中包含序列式容器和关联式容器 1.关联式容器:它里面存储的是元素本身,其底层是线性序列的数据结构,比如:vector,list,deque,forward_list(C11)等 2.关联式容器里面储存的…...

新能源二手车交易量有望破百万,二手车市场回暖了吗?
这些年,伴随着新能源汽车市场的高速发展,各种新能源车的二手车也在逐渐增加,不过之前的二手车市场相对比较冷清,就在最近一则新闻传出新能源二手车交易量有望破百万,二手车市场这是回暖了吗? 一、新能源二手…...
哈佛商业评论 | 项目经济的到来:组织变革与管理革新的关键
在21世纪,项目经济(Project Economy)逐步取代传统运营,成为全球经济增长的核心动力。项目已不再是辅助工具,而是推动创新和变革的重要载体。然而,只有35%的项目能够成功,显示出项目管理领域存在巨大的改进空间。本文将详细探讨项目经济的背景、项目管理的挑战,以及适应…...
web浏览器环境下使用window.open()打开PDF文件不是预览,而是下载文件?
如果你使用 window.open() 方法打开 PDF 文件,但浏览器不是预览而是下载文件,这可能是由于以下几个原因: 服务器配置:服务器可能将 PDF 文件配置为下载而不是预览。例如,服务器可能设置了 Content-Disposition 响应头…...

【GeekBand】C++设计模式笔记12_Singleton_单件模式
1. “对象性能” 模式 面向对象很好地解决了 “抽象” 的问题, 但是必不可免地要付出一定的代价。对于通常情况来讲,面向对象的成本大都可以忽略不计。但是某些情况,面向对象所带来的成本必须谨慎处理。典型模式 SingletonFlyweight 2. Si…...

Pyhon基础数据结构(列表)【蓝桥杯】
a [1,2,3,4,5] a.reverse() print("a ",a) a.reverse() print("a ",a)# 列表 列表(list)有由一系列按照特定顺序排序的元素组成 列表是有顺序的,访问任何元素需要通过“下标访问” 所谓“下标”就是指元素在列表从左…...

Linux篇(权限管理命令)
目录 一、权限概述 1. 什么是权限 2. 为什么要设置权限 3. Linux中的权限类别 4. Linux中文件所有者 4.1. 所有者分类 4.2. 所有者的表示方法 属主权限 属组权限 其他权限 root用户(超级管理员) 二、普通权限管理 1. ls查看文件权限 2. 文件…...

深入理解 Spark 中的 Shuffle
Spark 的介绍与搭建:从理论到实践_spark环境搭建-CSDN博客 Spark 的Standalone集群环境安装与测试-CSDN博客 PySpark 本地开发环境搭建与实践-CSDN博客 Spark 程序开发与提交:本地与集群模式全解析-CSDN博客 Spark on YARN:Spark集群模式…...

leetcode-8-字符串转整数
题解: 代码:...
SQL注入注入方式(大纲)
SQL注入注入方式(大纲) 常规注入 通常没有任何过滤,直接把参数存放到SQL语句中。 宽字节注入 GBK 编码 两个字节表示一个字符ASCII 编码 一个字节表示一个字符MYSQL默认字节集是GBK等宽字节字符集 原理: 设置MySQL时错误配置…...

OpenCV基础(1)
1.图像读写与窗口显示 1.1.imread读取图像文件 Mat cv::imread(const string &filename,int flags IMREAD_COLOR); filename:要读取的图像文件名flags:读取模式,可以从枚举cv::ImreadModes中取值,默认取值是IMREAD_COLOR&am…...

【freertos】FreeRTOS信号量的介绍及使用
FreeRTOS信号量 一、概述二、PV原语三、函数接口1.创建一个计数信号量2.删除一个信号量3.信号量释放4.在中断释放信号量5.获取一个信号量,可以是二值信号量、计数信号量、互斥量。6.在中断获取一个信号量,可以是二值信号量、计数信号量7.创建一个二值信号…...
React Native 全栈开发实战班 - 图片加载与优化
在移动应用中,图片加载与优化 是提升用户体验和减少资源消耗的重要环节。图片加载不当可能导致应用卡顿、内存泄漏甚至崩溃。本章节将介绍 React Native 中常用的图片加载方法,包括 Image 组件的使用、第三方图片加载库(如 react-native-fast…...

Golang云原生项目:—实现ping操作
熟悉报文结构 ICMP校验和算法: 报文内容,相邻两个字节拼接到一起组成一个16bit数,将这些数累加求和若长度为奇数,则将剩余一个字节,也累加求和得出总和之后,将和值的高16位与低16位不断求和,直…...
mysql如何查看当前事务的事务id
-- 开启一个事务,但不执行写操作 START TRANSACTION; -- 查询 InnoDB 事务信息 SELECT * FROM information_schema.innodb_trx;在 MySQL 的 MVCC (多版本并发控制) 中,事务 ID (Transaction ID) 是由 InnoDB 存储引擎分配的,它的分配机制与事…...
在linux里如何利用vim对比两个文档不同的行数
在Linux中,可以使用vimdiff命令来对比两个文档中不同的行。首先确保你的系统中安装了vim编辑器。 打开终端,使用以下命令来启动vimdiff: vimdiff file1 file2 这里file1和file2是你想要对比的两个文件的路径。 vimdiff会以并排方式打开两…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...