当前位置: 首页 > news >正文

浅论AI大模型在电商行业的发展未来

        随着人工智能(AI)技术的快速发展,AI大模型在电商行业中扮演着越来越重要的角色。本文旨在探讨AI大模型如何赋能电商行业,包括提升销售效率、优化用户体验、增强供应链管理等方面。通过分析AI大模型在电商领域的应用案例和技术进展,本文揭示了AI技术如何推动电商行业的变革和发展。而电子商务作为信息技术的主要应用领域,一直以来被认为与数字产业密切相关的行业。随着国家大力推动产业数字化转型,传统电子商务也面临着产业升级的内在需要。AI大模型、生成式AI(AIGC)成为时下热议话题。本文从国内产业数字化转型的战略背景,到全球人工智能的发展现状,切入研究产业数字化转型下AI赋能电商发展的创新模式,并给出相关代码进行案例分析。

关键词:应用多样;效率提高;风险机遇并存;代码分析

一、AI技术让应用多样

1.购物推荐

        AI技术通过分析用户的浏览记录、购买历史、搜索习惯等数据,构建个性化的用户画像,实现精准的商品推荐。例如,亚马逊利用协同过滤算法和基于内容的推荐算法,为用户推荐可能感兴趣的商品。这种个性化推荐显著提高了用户的购买转化率,据统计,亚马逊个性化推荐系统能为其贡献约 35% 的销售额。

2.会员分类

        电商平台如淘宝通过AI技术分析会员的消费频次、消费金额、购买商品种类、浏览历史等多维度数据。对于高消费、高忠诚度的会员,提供更多专属优惠、优先客服服务等特权。这种精准的会员分类提升了会员的满意度和忠诚度,使得会员的续费率有所提高。

3.商品定价

        一些电商平台利用动态定价算法,基于AI技术实时监测市场供需情况、竞争对手价格、商品库存等因素。例如,在旅游预订平台上,临近出行日期但仍有大量余票的航班,价格可能会降低以吸引更多消费者。通过这种方式,实现了利润的最大化,同时在价格竞争中保持优势。

4.用户体验

        许多电商平台采用了智能客服系统,这些系统基于自然语言处理技术,能够快速准确地回答用户常见问题。用户无需等待人工客服,随时能得到解答,大大提高了购物体验的便捷性。同时,一些平台利用AI技术实现了虚拟试衣、虚拟家居布置等功能,让用户在购买前更直观地感受商品效果。

5.实际案例

        对于一些简单的订单处理任务,如订单状态更新、支付确认等,AI可以自动完成。以下是一个示例,展示如何使用Python进行订单状态更新:

import datetime# 假设我们有以下订单数据
orders = pd.DataFrame({'order_id': [1, 2, 3],'status': ['pending', 'paid', 'shipped'],  # 订单状态'created_at': [datetime.datetime.now() - datetime.timedelta(days=1),datetime.datetime.now() - datetime.timedelta(days=2),datetime.datetime.now() - datetime.timedelta(days=3)]
})# 订单处理逻辑
def process_orders(orders):# 更新订单状态for index, order in orders.iterrows():if order['status'] == 'pending':# 模拟支付确认过程orders.at[index, 'status'] = 'paid'orders.at[index, 'updated_at'] = datetime.datetime.now()elif order['status'] == 'paid':# 模拟发货过程orders.at[index, 'status'] = 'shipped'orders.at[index, 'updated_at'] = datetime.datetime.now()return orders# 执行订单处理
processed_orders = process_orders(orders)
print(processed_orders)

二、AI技术让效率提高

1.订单处理

        AI技术可实现自动化订单分配和处理流程优化。例如,当大量订单同时涌入时,AI系统可以根据订单内容、仓库位置、物流配送时效等因素,自动将订单分配到最合适的仓库进行处理。同时,对于一些简单的订单处理任务,如订单状态更新、支付确认等,AI可以自动完成,提高了整个订单处理的效率。       

2.物流配送

        AI能通过分析历史订单和地理分布,优化配送路线并合理调配运输资源。一些电商平台还引入了无人配送技术,结合机器学习预测配送需求峰值,确保在高峰期也能快速完成配送。此外,AI还能协助制定运输路线,降低油耗和运输时间,帮助企业节约成本。

3.实际案例  

        在处理大量订单时,AI系统可以根据订单内容、仓库位置、物流配送时效等因素,自动将订单分配到最合适的仓库进行处理。以下是一个简化的示例,展示如何使用Python进行订单分配策略的建模:

import numpy as np
import pandas as pd# 假设我们有以下订单数据
orders = pd.DataFrame({'order_id': [1, 2, 3],'weight': [1.5, 2.0, 1.0],  # 订单重量'destination': ['A', 'B', 'A']  # 目的地
})# 假设我们有以下仓库数据
warehouses = pd.DataFrame({'warehouse_id': [1, 2],'location': ['X', 'Y'],'capacity': [10, 15]  # 仓库容量
})# 计算每个订单到每个仓库的距离(这里简化为直接计算)
distance_matrix = pd.DataFrame({'warehouse_id': [1, 1, 2, 2],'order_id': [1, 2, 1, 2],'distance': [100, 150, 200, 250]  # 距离
})# 订单分配逻辑
def assign_orders(orders, warehouses, distance_matrix):# 初始化分配结果assignments = pd.DataFrame(columns=['order_id', 'assigned_warehouse'])for order_id in orders['order_id']:# 找到当前订单的所有可能分配possible_assignments = distance_matrix[distance_matrix['order_id'] == order_id]# 选择距离最近的仓库进行分配assigned_warehouse = possible_assignments.loc[possible_assignments['distance'].idxmin(), 'warehouse_id']# 添加到分配结果assignments = assignments.append({'order_id': order_id, 'assigned_warehouse': assigned_warehouse}, ignore_index=True)return assignments# 执行订单分配
assignments = assign_orders(orders, warehouses, distance_matrix)
print(assignments)

三、AI技术未来风险机遇并存

1.挑战

        AI技术在电商行业中的应用仍面临许多挑战,例如:数据安全、隐私保护等问题。网络安全专家指出,电商平台应该加大对新技术的投资,如人工智能和区块链技术,以增强系统的安全性。通过人工智能分析和预测,企业可以提前识别潜在问题并进行修复。

2.未来发展趋势

        随着AI技术的不断演进和应用成本的下降,电商行业有望实现更智能、更高效的全面升级。未来电商行业可能会出现更多沉浸式、个性化的用户体验。例如,电商平台可以通过情绪识别算法,根据用户情绪实时调整推荐内容,增强互动感。此外,AI还将在客服领域发挥更大作用,能够快速响应、理解用户需求,为用户带来更顺畅的购物体验。

3.新应用预测

        随着技术的发展,越来越多的电商平台开始尝试运用AI技术来提高销售效率,从用户体验到供应链管理,AI深刻影响着行业的未来发展趋势。例如,个性化推荐系统、场景化推荐、会员分类与价值评估、动态定价与促销优化、智能客服与聊天机器人、图像识别与搜索、供应链优化、个性化营销、数据分析与决策支持、安全与反欺诈等。

4.实际案例

        以下我们将使用协同过滤算法来推荐商品。协同过滤是一种常用的推荐算法,它基于用户的历史行为来推荐商品。

import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import CountVectorizer# 假设我们有以下用户商品评分数据
data = {'user_id': [1, 1, 2, 2, 3, 3, 4, 4],'product_id': [101, 102, 101, 103, 102, 103, 101, 104],'rating': [5, 3, 4, 2, 5, 4, 3, 5]
}# 创建DataFrame
df = pd.DataFrame(data)# 创建用户-商品评分矩阵
user_product_matrix = df.pivot_table(index='user_id', columns='product_id', values='rating').fillna(0)# 计算用户之间的相似度
user_similarity = cosine_similarity(user_product_matrix)
user_similarity_df = pd.DataFrame(user_similarity, index=user_product_matrix.index, columns=user_product_matrix.index)# 定义一个函数来推荐商品
def recommend_products(user_id, user_similarity_df, user_product_matrix, num_recommendations=3):# 获取用户相似度最高的用户similar_users = user_similarity_df[user_id].sort_values(ascending=False).index[1:]# 获取这些用户评分最高的商品recommendations = user_product_matrix.loc[similar_users].sum().sort_values(ascending=False)# 过滤掉用户已经评分过的商品recommendations = recommendations[~recommendations.index.isin(user_product_matrix.loc[user_id][user_product_matrix.loc[user_id] > 0].index)]# 返回推荐列表return recommendations.head(num_recommendations)# 为用户1推荐商品
recommendations = recommend_products(1, user_similarity_df, user_product_matrix)
print("推荐商品给用户1:")
print(recommendations)

        这个示例展示了如何使用简单的协同过滤算法来实现个性化推荐。在实际应用中,推荐系统可能会更复杂,包括使用更高级的算法和更多的特征。

四、结论

        AI大模型在电商行业的赋能作用是显而易见的。通过个性化推荐、精准会员分类、动态定价、供应链优化以及提升用户体验等多方面的创新应用,电商平台能够提高销售效率,增强用户粘性,优化运营成本,全面引领行业的变革。未来,随着AI技术的不断进步,电商行业将迎来更多的机遇和挑战,值得我们持续关注和探索。

本文作者:庹忠曜

相关文章:

浅论AI大模型在电商行业的发展未来

随着人工智能(AI)技术的快速发展,AI大模型在电商行业中扮演着越来越重要的角色。本文旨在探讨AI大模型如何赋能电商行业,包括提升销售效率、优化用户体验、增强供应链管理等方面。通过分析AI大模型在电商领域的应用案例和技术进展…...

【python笔记03】《类》

文章目录 面向对象基本概念对象的概念类的概念 类的定义类的创建(实例的模板)类的实例化--获取对象对象方法中的self关键字面试题请描述什么是对象,什么是类。请观阅读如下代码,判断是否能正常运行,如果不能正常运行&a…...

Flutter 应用在真机上调试的流程

在真机上调试 Flutter 应用的方法有很多,可以使用 USB 数据线连接设备到电脑进行调试,也可以通过无线方式进行 Flutter 真机调试。 1. 有线调试 设备准备 启用开发者模式: Android:进入 设置 > 关于手机,连续点击…...

以太坊基础知识结构详解

以太坊的历史和发展 初创阶段 2013年:Vitalik Buterin 发表了以太坊白皮书,提出了一个通用的区块链平台,不仅支持比特币的货币功能,还能支持更复杂的智能合约。2014年:以太坊项目启动,进行了首次ICO&…...

安全见闻(完整版)

目录 安全见闻1 编程语言和程序 编程语言 函数式编程语言: 数据科学和机器学习领域: Web 全栈开发: 移动开发: 嵌入式系统开发: 其他: 编程语言的方向: 软件程序 操作系统 硬件设备…...

LeetCode100之反转链表(206)--Java

1.问题描述 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表 示例1 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1] 示例2 输入:head [1,2] 输出:[2,1] 示例3 输入:head [] 输…...

牛客周赛第一题2024/11/17日

链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网 时间限制:C/C/Rust/Pascal 1秒,其他语言2秒 空间限制:C/C/Rust/Pascal 256 M,其他语言512 M 64bit IO Format: %lld 题目描述 小红这天来到了三…...

麒麟Server下安装东方通TongLINK/Q

环境 系统:麒麟Server SP3 2403 应用:TLQ8.1(Install_TLQ_Standard_Linux2.6.32_x86_64_8.1.17.0.tar.gz) 安装Server 将文件解压到/usr/local/tlq。 cd /opt/tlq/ mkdir /usr/local/tlq/ tar -zxvf Install_TLQ_Standard_Linux2.6.32_x86_64_8.1.1…...

BERT的中文问答系统33

我们在现有的代码基础上增加网络搜索的功能。我们使用 requests 和 BeautifulSoup 来从百度搜索结果中提取信息。以下是完整的代码,包括项目结构、README.md 文件以及所有必要的代码。 项目结构 xihe241117/ ├── data/ │ └── train_data.jsonl ├── lo…...

Ubuntu下的Eigen库的安装及基本使用教程

一、Eigen库介绍 简介 Eigen [1]目前最新的版本是3.4,除了C标准库以外,不需要任何其他的依赖包。Eigen使用的CMake建立配置文件和单元测试,并自动安装。如果使用Eigen库,只需包特定模块的的头文件即可。 基本功能 Eigen适用范…...

【spring 】Spring Cloud Gateway 的Filter学习

介绍和使用场景 Spring Cloud Gateway 是一个基于 Spring Framework 5 和 Project Reactor 的 API 网关,它旨在为微服务架构提供一种简单而有效的方式来处理请求路由、过滤、限流等功能。在 Spring Cloud Gateway 中,Filter 扮演着非常重要的角色&#…...

每秒交易数(Transactions Per Second:TPS)详细拆解

每秒交易数(TPS)是指计算机网络每秒可以处理的交易数量。TPS是衡量不同区块链和其他计算机系统速度的关键指标。然而,TPS并不是用来衡量区块链速度的唯一指标。许多人认为,虽然TPS很重要,但最终性实际上是一个更重要的…...

【初阶数据结构与算法】链表刷题之链表分割、相交链表、环形链表1、环形链表I、环形链表II

文章目录 一、链表分割二、相交链表三、环形链表I四、环形链表|| 一、链表分割 题目链接:https://www.nowcoder.com/practice/0e27e0b064de4eacac178676ef9c9d70 我们来看看链表分割的题目描述和它给出的函数:    这个题虽然是以C形式来做&#xff0…...

【STL】set,multiset,map,multimap的介绍以及使用

关联式容器 在C的STL中包含序列式容器和关联式容器 1.关联式容器:它里面存储的是元素本身,其底层是线性序列的数据结构,比如:vector,list,deque,forward_list(C11)等 2.关联式容器里面储存的…...

新能源二手车交易量有望破百万,二手车市场回暖了吗?

这些年,伴随着新能源汽车市场的高速发展,各种新能源车的二手车也在逐渐增加,不过之前的二手车市场相对比较冷清,就在最近一则新闻传出新能源二手车交易量有望破百万,二手车市场这是回暖了吗? 一、新能源二手…...

哈佛商业评论 | 项目经济的到来:组织变革与管理革新的关键

在21世纪,项目经济(Project Economy)逐步取代传统运营,成为全球经济增长的核心动力。项目已不再是辅助工具,而是推动创新和变革的重要载体。然而,只有35%的项目能够成功,显示出项目管理领域存在巨大的改进空间。本文将详细探讨项目经济的背景、项目管理的挑战,以及适应…...

web浏览器环境下使用window.open()打开PDF文件不是预览,而是下载文件?

如果你使用 window.open() 方法打开 PDF 文件,但浏览器不是预览而是下载文件,这可能是由于以下几个原因: 服务器配置:服务器可能将 PDF 文件配置为下载而不是预览。例如,服务器可能设置了 Content-Disposition 响应头…...

【GeekBand】C++设计模式笔记12_Singleton_单件模式

1. “对象性能” 模式 面向对象很好地解决了 “抽象” 的问题, 但是必不可免地要付出一定的代价。对于通常情况来讲,面向对象的成本大都可以忽略不计。但是某些情况,面向对象所带来的成本必须谨慎处理。典型模式 SingletonFlyweight 2. Si…...

Pyhon基础数据结构(列表)【蓝桥杯】

a [1,2,3,4,5] a.reverse() print("a ",a) a.reverse() print("a ",a)# 列表 列表(list)有由一系列按照特定顺序排序的元素组成 列表是有顺序的,访问任何元素需要通过“下标访问” 所谓“下标”就是指元素在列表从左…...

Linux篇(权限管理命令)

目录 一、权限概述 1. 什么是权限 2. 为什么要设置权限 3. Linux中的权限类别 4. Linux中文件所有者 4.1. 所有者分类 4.2. 所有者的表示方法 属主权限 属组权限 其他权限 root用户(超级管理员) 二、普通权限管理 1. ls查看文件权限 2. 文件…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

PHP和Node.js哪个更爽?

先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

【单片机期末】单片机系统设计

主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

网络编程(UDP编程)

思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...