当前位置: 首页 > news >正文

蓝桥杯备赛(持续更新)


16届蓝桥杯算法类知识图谱.pdf

1. 格式打印

%03d:如果是两位数,将会在前面添上一位0

%.2f:会保留两位小数

如果是long,必须在数字后面加上L

2. 进制转化

2.1. 十进制转任意进制:

十进制转任意进制时,将这个十进制数除以进制数,比如2(也就是十进制转二进制),得到商和一个从0~1的余数,然后再以这个商为被除数,除了进制数2,继续得到商和一个从0~1的余数。以此方式不断相除,直到得到的商为0为止。此时,得到若干个余数,把这些余数按从后到先的顺序排列起来,那么这个排列起来的值即为该十进制转换成二进制的值。计算如图所示:

最后得到的余数为二进制的非零的最高位,最先得到的余数为二进制的最低位,可知:十进制数9转换成二进制数为1001。

2.2. 任意进制转十进制:

任意进制转十进制时,以二进制数1001为例:该进制的最低位(右一)的值1就表示实际的十进制值1,次低位(右二)的值0表示进制数2的一次方的0倍即为0,次次低位(右三)的值0表示进制数2的二次方4的0倍即为0,最高位(左一)的值1表示进制数2的三次方8的1倍即为8,以此类推,将每位得到的十进制数相加得到9,该和即为二进制数1001对应的十进制数。计算如图所示:

3. 一维前缀和

  1. 快速求解某区间内的各种形式的和即可使用
  2. 使用迭代求和
sum[i]=sum[i-1]+num[i]

4. 一维差分

  1. bi = ai-ai-1

其中b1 = a1

  1. 如果cb的前缀和:即,ci = ci-1 + bi
  2. 那么c就是原数组a

4.1. 常见性质

  1. 差分数组都是0,说明原数组每个元素都相同
  2. 差分数组的前缀和就是原数组
  3. 如果bl + d 与 br+1 - d同时作用,则c数组就是原数组ai+d的结果
  4. 对差分的某一个位置减一等价于对原数组此位置及以后的位置减一

4.2. 特殊数列

数列: 1 4 10 20 35

对应的差分数列:1 3 6 10 15

差分数列是等差数列

5. 快读模板

static FastReader in = new FastReader(); // 创建一个静态的 FastReader 对象,用于处理输入
static PrintWriter out = new PrintWriter(System.out); // 创建一个静态的 PrintWriter 对象,用于输出数据// FastReader 类,用于处理高效的输入
static class FastReader {static BufferedReader br; // 静态的 BufferedReader,用于高效读取输入static StringTokenizer st; // 静态的 StringTokenizer,用于将输入字符串分割为标记// 构造函数,初始化 BufferedReader 以从标准输入读取数据FastReader() {br = new BufferedReader(new InputStreamReader(System.in)); // 使用 System.in 作为输入流初始化 BufferedReader}// next() 方法,返回下一个字符串标记String next() {String str = ""; // 定义一个空字符串,用于存储读取到的行// 如果 StringTokenizer 为 null 或没有更多标记可读取,读取新行while (st == null || !st.hasMoreElements()) {try {str = br.readLine(); // 使用 BufferedReader 读取一整行输入} catch (IOException e) { // 捕获可能的 I/O 异常throw new RuntimeException(e); // 如果发生异常,抛出运行时异常}st = new StringTokenizer(str); // 将读取到的行传递给 StringTokenizer 进行分割}return st.nextToken(); // 返回 StringTokenizer 的下一个标记}// nextInt() 方法,返回下一个整数输入int nextInt() {return Integer.parseInt(next()); // 使用 next() 方法读取字符串并转换为整数}// nextDouble() 方法,返回下一个双精度浮点数输入double nextDouble() {return Double.parseDouble(next()); // 使用 next() 方法读取字符串并转换为双精度浮点数}// nextLong() 方法,返回下一个长整数输入long nextLong() {return Long.parseLong(next()); // 使用 next() 方法读取字符串并转换为长整数}
}
  1. StringTokenizer 的分词作用
    • StringTokenizer 的作用是将一行输入拆分成多个标记,便于依次处理(比如单词或数字)。
    • 可以理解为:st 是一个“分词器”,根据空格等分隔符来划分输入。
  1. 总结记忆方法:
    1. 输入原理BufferedReader + StringTokenizer = 快速读取并分词。
    2. 输出原理PrintWriter = 快速输出。
    3. 类型方法next() 负责读取字符串标记,nextInt() 等方法负责类型转换。

6. 二维差分

二维差分是在一维差分的基础上推导的公式。

之前学过,差分数组的前缀和就是原数组,由此进行推导即可。

使用 s表示前缀和数组,a表示原数组。

则:

s(i,j) = a(i,j) + s(i-1,j) + s(i,j-1) - s(i-1,j-1)

那么我们现在要求二维差分数组,就:

  1. 原数组看做差分数组
  2. 前缀和看做原数组

具体原因见下图。

那么,我们要求差分(定为 b),就将差分移到左边(原式中的 a):

a(i,j) = s(i,j) - s(i-1,j) - s(i,j-1) + s(i-1,j-1)

更换为正确的字母后:

b(i,j) = a(i,j) - a(i-1,j) - a(i,j-1) + a(i-1,j-1)

上式就是二维差分的公式。

要求原数组的话,就将 b 求前缀和即可。

6.1. 二维数组对于某个区域加常数 c

使用二维差分数组。

b(x1,y1) += c;

b(x1,y2+1) -= c;

b(x2+1,y1) -= c;

b(x2+1,y2+1) += c;(多减了一次)

之后再对 b 数组求前缀和得到二维原数组。


1. 格式打印

%03d:如果是两位数,将会在前面添上一位0

%.2f:会保留两位小数

如果是long,必须在数字后面加上L

2. 进制转化

2.1. 十进制转任意进制:

十进制转任意进制时,将这个十进制数除以进制数,比如2(也就是十进制转二进制),得到商和一个从0~1的余数,然后再以这个商为被除数,除了进制数2,继续得到商和一个从0~1的余数。以此方式不断相除,直到得到的商为0为止。此时,得到若干个余数,把这些余数按从后到先的顺序排列起来,那么这个排列起来的值即为该十进制转换成二进制的值。计算如图所示:

最后得到的余数为二进制的非零的最高位,最先得到的余数为二进制的最低位,可知:十进制数9转换成二进制数为1001。

2.2. 任意进制转十进制:

任意进制转十进制时,以二进制数1001为例:该进制的最低位(右一)的值1就表示实际的十进制值1,次低位(右二)的值0表示进制数2的一次方的0倍即为0,次次低位(右三)的值0表示进制数2的二次方4的0倍即为0,最高位(左一)的值1表示进制数2的三次方8的1倍即为8,以此类推,将每位得到的十进制数相加得到9,该和即为二进制数1001对应的十进制数。计算如图所示:

3. 一维前缀和

  1. 快速求解某区间内的各种形式的和即可使用
  2. 使用迭代求和
sum[i]=sum[i-1]+num[i]

4. 一维差分

  1. bi = ai-ai-1

其中b1 = a1

  1. 如果cb的前缀和:即,ci = ci-1 + bi
  2. 那么c就是原数组a

4.1. 常见性质

  1. 差分数组都是0,说明原数组每个元素都相同
  2. 差分数组的前缀和就是原数组
  3. 如果bl + d 与 br+1 - d同时作用,则c数组就是原数组ai+d的结果
  4. 对差分的某一个位置减一等价于对原数组此位置及以后的位置减一

4.2. 特殊数列

数列: 1 4 10 20 35

对应的差分数列:1 3 6 10 15

差分数列是等差数列

5. 快读模板

static FastReader in = new FastReader(); // 创建一个静态的 FastReader 对象,用于处理输入
static PrintWriter out = new PrintWriter(System.out); // 创建一个静态的 PrintWriter 对象,用于输出数据// FastReader 类,用于处理高效的输入
static class FastReader {static BufferedReader br; // 静态的 BufferedReader,用于高效读取输入static StringTokenizer st; // 静态的 StringTokenizer,用于将输入字符串分割为标记// 构造函数,初始化 BufferedReader 以从标准输入读取数据FastReader() {br = new BufferedReader(new InputStreamReader(System.in)); // 使用 System.in 作为输入流初始化 BufferedReader}// next() 方法,返回下一个字符串标记String next() {String str = ""; // 定义一个空字符串,用于存储读取到的行// 如果 StringTokenizer 为 null 或没有更多标记可读取,读取新行while (st == null || !st.hasMoreElements()) {try {str = br.readLine(); // 使用 BufferedReader 读取一整行输入} catch (IOException e) { // 捕获可能的 I/O 异常throw new RuntimeException(e); // 如果发生异常,抛出运行时异常}st = new StringTokenizer(str); // 将读取到的行传递给 StringTokenizer 进行分割}return st.nextToken(); // 返回 StringTokenizer 的下一个标记}// nextInt() 方法,返回下一个整数输入int nextInt() {return Integer.parseInt(next()); // 使用 next() 方法读取字符串并转换为整数}// nextDouble() 方法,返回下一个双精度浮点数输入double nextDouble() {return Double.parseDouble(next()); // 使用 next() 方法读取字符串并转换为双精度浮点数}// nextLong() 方法,返回下一个长整数输入long nextLong() {return Long.parseLong(next()); // 使用 next() 方法读取字符串并转换为长整数}
}
  1. StringTokenizer 的分词作用
    • StringTokenizer 的作用是将一行输入拆分成多个标记,便于依次处理(比如单词或数字)。
    • 可以理解为:st 是一个“分词器”,根据空格等分隔符来划分输入。
  1. 总结记忆方法:
    1. 输入原理BufferedReader + StringTokenizer = 快速读取并分词。
    2. 输出原理PrintWriter = 快速输出。
    3. 类型方法next() 负责读取字符串标记,nextInt() 等方法负责类型转换。

6. 二维差分

二维差分是在一维差分的基础上推导的公式。

之前学过,差分数组的前缀和就是原数组,由此进行推导即可。

使用 s表示前缀和数组,a表示原数组。

则:

s(i,j) = a(i,j) + s(i-1,j) + s(i,j-1) - s(i-1,j-1)

那么我们现在要求二维差分数组,就:

  1. 原数组看做差分数组
  2. 前缀和看做原数组

具体原因见下图。

那么,我们要求差分(定为 b),就将差分移到左边(原式中的 a):

a(i,j) = s(i,j) - s(i-1,j) - s(i,j-1) + s(i-1,j-1)

更换为正确的字母后:

b(i,j) = a(i,j) - a(i-1,j) - a(i,j-1) + a(i-1,j-1)

上式就是二维差分的公式。

要求原数组的话,就将 b 求前缀和即可。

6.1. 二维数组对于某个区域加常数 c

使用二维差分数组。

b(x1,y1) += c;

b(x1,y2+1) -= c;

b(x2+1,y1) -= c;

b(x2+1,y2+1) += c;(多减了一次)

之后再对 b 数组求前缀和得到二维原数组。

相关文章:

蓝桥杯备赛(持续更新)

16届蓝桥杯算法类知识图谱.pdf 1. 格式打印 %03d:如果是两位数,将会在前面添上一位0 %.2f:会保留两位小数 如果是long,必须在数字后面加上L。 2. 进制转化 2.1. 十进制转任意进制: 十进制转任意进制时&#xff…...

k8s 学习笔记之 k8s 存储管理

文章目录 概述卷卷的常用类型emptyDir边车容器 HostPathnfsPV/PVC静态供给 PV 和 PVC创建静态 PV创建 pvc创建 pod 应用 pvc 动态供给 PV 和 PVC创建 StorageClass创建 pvc创建 pod 使用 pvc PV 的生命周期 内置存储对象ConfigMapSecret 配置文件自动重新加载方案**1. 应用内动…...

ios swift开发--ios远程推送通知配置

远程推送通知(Push Notifications)在 iOS 平台上是免费提供的,但需要一些准备工作。以下是开通和使用远程推送通知的基本步骤: 开通远程推送通知 注册 Apple Developer Program: 访问 Apple Developer 并注册一个开发…...

【JavaEE进阶】CSS

本节⽬标 掌握 CSS 基本语法规范和CSS选择器的各种⽤法, 熟练使⽤CSS的常⽤属性. 一.CSS介绍 1.什么是CSS? CSS(Cascading Style Sheet),层叠样式表, ⽤于控制⻚⾯的样式. CSS 能够对⽹⻚中元素位置的排版进⾏像素级精确控制, 实现美化⻚⾯的效果. 能够做到⻚⾯…...

基于Java Springboot宠物领养救助平台

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 数据…...

C/C++ 中有哪些类型转换方式? 分别有什么区别?

在C编写C/C代码的时候,我们经常会遇到发生类型转换的场景,比如 赋值运算符的两个操作数不同、实参和形参类型不同、函数返回值类型和接收返回值的类型不同,都会发生类型转换;所以,在C语言中提供了两种类型转换 —— 隐…...

小程序租赁系统开发为企业提供高效便捷的租赁服务解决方案

内容概要 在这个数字化飞速发展的时代,小程序租赁系统应运而生,成为企业管理租赁业务的一种新选择。随着移动互联网的普及,越来越多的企业开始关注如何利用小程序来提高租赁服务的效率和便捷性。小程序不仅可以为用户提供一个快速、易用的平…...

Scala的Array

数组:物理空间上连续的(一个挨一个) 优势:根据下标,能快速找到元素 列表:物理空间上不连续(不是一个元素挨着一个元素) 优势:插入元素,删除比较快 object…...

等保测评怎么做?具体流程是什么?

等保测评是对信息系统进行等保(等级保护)安全评测的过程。等保是指对信息系统进行等级化保护管理,目的是提高信息系统的安全性,防止信息泄露、篡改、破坏等安全问题。哈尔滨等保测评按照《中华人民共和国网络安全法》及《信息安全…...

基于YOLOv8深度学习的汽车车身车损检测系统研究与实现(PyQt5界面+数据集+训练代码)

本文研究并实现了一种基于YOLOV8深度学习模型的汽车车身车损检测系统,旨在解决传统车损检测中效率低、精度不高的问题。该系统利用YOLOV8的目标检测能力,在单张图像上实现了车身损坏区域的精确识别和分类,尤其是在车身凹痕、车身裂纹和车身划…...

力扣 LeetCode 144. 二叉树的前序遍历(Day6:二叉树)

解题思路&#xff1a; 方法一&#xff1a;递归&#xff08;中左右&#xff09; class Solution {List<Integer> res new ArrayList<>();public List<Integer> preorderTraversal(TreeNode root) {recur(root);return res;}public void recur(TreeNode roo…...

Adobe Illustrator(Ai)修图软件入门操作参考,收集查过的各个细节用法

到现在&#xff0c;对于Ai的使用也是一半一半&#xff0c;基本上都是用到啥就查啥。因为用得也不是很频繁&#xff0c;脑子也记不住很多操作&#xff0c;所以有时候靠肌肉记忆&#xff0c;很多时候&#xff0c;得再百度一遍…… 所以 我在这再备份一下&#xff0c;做个搬运工 …...

Apache Paimon、Apache Hudi、Apache Iceberg对比分析

Apache Paimon、Apache Hudi、Apache Iceberg 都是面向大数据湖的表格式存储管理框架。它们各自的架构、数据管理方式以及适用场景有所不同。下面是对三者的详细对比分析: 1. 基本简介 Apache Paimon: Paimon 是一个新兴的数据湖存储引擎,旨在支持流批一体的数据处理和管理…...

[ 网络安全介绍 5 ] 为什么要学习网络安全?

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…...

生产环境centos8 Red Hat8部署ansible and 一键部署mysql两主两从ansible脚本预告

一、各节点服务器创建lvm逻辑卷组 1.初始化磁盘为物理卷&#xff08;PV&#xff09; 命令&#xff1a;sudo pvcreate /dev/vdb 2.创建卷组&#xff08;VG&#xff09; 命令&#xff1a;sudo vgcreate db_vg /dev/vdb 3.创建逻辑卷&#xff08;LV&#xff09; 命令&#xff1a;s…...

华为云stack网络服务流量走向

1.同VPC同子网同主机内ECS间互访流量走向 一句话通过主机内部br-int通信 2.同VPC同子网跨主机ECS间互访流量走向 3.同VPC不同子网同主机ECS间互访流量走向 查看ECS配置文件底层KVM技术 查看日志 查看ECS的ID号&#xff08;管理员身份查询所有租户信息&#xff09; 查看ECS的其…...

嵌入式硬件杂谈(二)-芯片输入接入0.1uf电容的本质(退耦电容)

引言&#xff1a;对于嵌入式硬件这个庞大的知识体系而言&#xff0c;太多离散的知识点很容易疏漏&#xff0c;因此对于这些容易忘记甚至不明白的知识点做成一个梳理&#xff0c;供大家参考以及学习&#xff0c;本文主要针对芯片输入接入0.1uf电容的本质的知识点的进行学习。 目…...

计算机网络HTTP——针对实习面试

目录 计算机网络HTTP什么是HTTP&#xff1f;HTTP和HTTPS有什么区别&#xff1f;分别说明HTTP/1.0、HTTP/2.0、HTTP/3.0请说明访问网页的全过程请说明HTTP常见的状态码Cookie和Session有什么区别&#xff1f;HTTP请求方式有哪些&#xff1f;请解释GET和POST的区别&#xff1f;HT…...

JAVA中对象实体与对象引用有何不同?举例说明

在 Java 中&#xff0c;对象实体&#xff08;Object instance&#xff09;和对象引用&#xff08;Object reference&#xff09;是两个不同的概念&#xff0c;虽然它们通常被一起讨论&#xff0c;但它们的作用和表现方式是不同的。下面我们来详细说明这两者的区别。 1. 对象实体…...

C++设计思想-001-设计模式-单例模式

1.单例模式优点 保证一个类仅有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享; 实现: 1.1 单例模式的类只提供私有的构造函数 1.2类定义中含有一个该类的静态私有对象 1.3该类提供了一个静态的公有的函数用于创建或获取它本身的静态私有对象 2.单…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链&#xff08;Filter Chain&#xff09;&#xff0c;核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤&#xff1a; 用户提交登录请求拦…...

对象回调初步研究

_OBJECT_TYPE结构分析 在介绍什么是对象回调前&#xff0c;首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例&#xff0c;用_OBJECT_TYPE这个结构来解析它&#xff0c;0x80处就是今天要介绍的回调链表&#xff0c;但是先不着急&#xff0c;先把目光…...

DAY 45 超大力王爱学Python

来自超大力王的友情提示&#xff1a;在用tensordoard的时候一定一定要用绝对位置&#xff0c;例如&#xff1a;tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾&#xff1a; tensorboard的发展历史和原理tens…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件&#xff0c;其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时&#xff0c;价带电子受激发跃迁至导带&#xff0c;形成电子-空穴对&#xff0c;导致材料电导率显著提升。…...