当前位置: 首页 > news >正文

基于BERT的情感分析

基于BERT的情感分析

1. 项目背景

情感分析(Sentiment Analysis)是自然语言处理的重要应用之一,用于判断文本的情感倾向,如正面、负面或中性。随着深度学习的发展,预训练语言模型如BERT在各种自然语言处理任务中取得了显著的效果。本项目利用预训练语言模型BERT,构建一个能够对文本进行情感分类的模型。


2. 项目结构

sentiment-analysis/
├── data/
│   ├── train.csv        # 训练数据集
│   ├── test.csv         # 测试数据集
├── src/
│   ├── preprocess.py    # 数据预处理模块
│   ├── train.py         # 模型训练脚本
│   ├── evaluate.py      # 模型评估脚本
│   ├── inference.py     # 模型推理脚本
│   ├── utils.py         # 工具函数(可选)
├── models/
│   ├── bert_model.pt    # 保存的模型权重
├── logs/
│   ├── training.log     # 训练日志(可选)
├── README.md            # 项目说明文档
├── requirements.txt     # 依赖包列表
└── run.sh               # 一键运行脚本

3. 环境准备

3.1 系统要求

  • Python 3.6 或以上版本
  • GPU(可选,但建议使用以加速训练)

3.2 安装依赖

建议在虚拟环境中运行。安装所需的依赖包:

pip install -r requirements.txt

requirements.txt内容:

torch>=1.7.0
transformers>=4.0.0
pandas
scikit-learn
tqdm

4. 数据准备

4.1 数据格式

数据文件train.csvtest.csv的格式如下:

textlabel
I love this product.1
This is a bad movie.0
  • text:输入文本
  • label:目标标签,1为正面情感,0为负面情感

将数据文件保存至data/目录下。

4.2 数据集划分

可以使用train_test_split将数据划分为训练集和测试集。


5. 代码实现

5.1 数据预处理 (src/preprocess.py)

import pandas as pd
from transformers import BertTokenizer
from torch.utils.data import Dataset
import torchclass SentimentDataset(Dataset):"""自定义的用于情感分析的Dataset。"""def __init__(self, data_path, tokenizer, max_len=128):"""初始化Dataset。Args:data_path (str): 数据文件的路径。tokenizer (BertTokenizer): BERT的分词器。max_len (int): 最大序列长度。"""self.data = pd.read_csv(data_path)self.tokenizer = tokenizerself.max_len = max_lendef __len__(self):"""返回数据集的大小。"""return len(self.data)def __getitem__(self, idx):"""根据索引返回一条数据。Args:idx (int): 数据索引。Returns:dict: 包含input_ids、attention_mask和label的字典。"""text = str(self.data.iloc[idx]['text'])label = int(self.data.iloc[idx]['label'])encoding = self.tokenizer(text, padding='max_length', truncation=True, max_length=self.max_len, return_tensors="pt")return {'input_ids': encoding['input_ids'].squeeze(0),  # shape: [seq_len]'attention_mask': encoding['attention_mask'].squeeze(0),  # shape: [seq_len]'label': torch.tensor(label, dtype=torch.long)  # shape: []}

5.2 模型训练 (src/train.py)

import torch
from torch.utils.data import DataLoader
from transformers import BertForSequenceClassification, AdamW, BertTokenizer, get_linear_schedule_with_warmup
from preprocess import SentimentDataset
import argparse
import os
from tqdm import tqdmdef train_model(data_path, model_save_path, batch_size=16, epochs=3, lr=2e-5, max_len=128):"""训练BERT情感分析模型。Args:data_path (str): 训练数据的路径。model_save_path (str): 模型保存的路径。batch_size (int): 批次大小。epochs (int): 训练轮数。lr (float): 学习率。max_len (int): 最大序列长度。"""# 初始化分词器和数据集tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')dataset = SentimentDataset(data_path, tokenizer, max_len=max_len)# 划分训练集和验证集train_size = int(0.8 * len(dataset))val_size = len(dataset) - train_sizetrain_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])# 数据加载器train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)val_loader = DataLoader(val_dataset, batch_size=batch_size)# 初始化模型model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)# 优化器和学习率调度器optimizer = AdamW(model.parameters(), lr=lr)total_steps = len(train_loader) * epochsscheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)# 设备设置device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model.to(device)# 训练循环for epoch in range(epochs):model.train()total_loss = 0progress_bar = tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}")for batch in progress_bar:optimizer.zero_grad()input_ids = batch['input_ids'].to(device)  # shape: [batch_size, seq_len]attention_mask = batch['attention_mask'].to(device)  # shape: [batch_size, seq_len]labels = batch['label'].to(device)  # shape: [batch_size]outputs = model(input_ids, attention_mask=attention_mask, labels=labels)loss = outputs.lossloss.backward()optimizer.step()scheduler.step()total_loss += loss.item()progress_bar.set_postfix(loss=loss.item())avg_train_loss = total_loss / len(train_loader)print(f"Epoch {epoch + 1}/{epochs}, Average Loss: {avg_train_loss:.4f}")# 验证模型model.eval()val_loss = 0correct = 0total = 0with torch.no_grad():for batch in val_loader:input_ids = batch['input_ids'].to(device)attention_mask = batch['attention_mask'].to(device)labels = batch['label'].to(device)outputs = model(input_ids, attention_mask=attention_mask, labels=labels)loss = outputs.losslogits = outputs.logitsval_loss += loss.item()preds = torch.argmax(logits, dim=1)correct += (preds == labels).sum().item()total += labels.size(0)avg_val_loss = val_loss / len(val_loader)val_accuracy = correct / totalprint(f"Validation Loss: {avg_val_loss:.4f}, Accuracy: {val_accuracy:.4f}")# 保存模型os.makedirs(os.path.dirname(model_save_path), exist_ok=True)torch.save(model.state_dict(), model_save_path)print(f"Model saved to {model_save_path}")if __name__ == "__main__":parser = argparse.ArgumentParser(description="Train BERT model for sentiment analysis")parser.add_argument('--data_path', type=str, default='data/train.csv', help='Path to training data')parser.add_argument('--model_save_path', type=str, default='models/bert_model.pt', help='Path to save the trained model')parser.add_argument('--batch_size', type=int, default=16, help='Batch size')parser.add_argument('--epochs', type=int, default=3, help='Number of training epochs')parser.add_argument('--lr', type=float, default=2e-5, help='Learning rate')parser.add_argument('--max_len', type=int, default=128, help='Maximum sequence length')args = parser.parse_args()train_model(data_path=args.data_path,model_save_path=args.model_save_path,batch_size=args.batch_size,epochs=args.epochs,lr=args.lr,max_len=args.max_len)

5.3 模型评估 (src/evaluate.py)

import torch
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from preprocess import SentimentDataset
from torch.utils.data import DataLoader
from transformers import BertForSequenceClassification, BertTokenizer
import argparse
from tqdm import tqdmdef evaluate_model(data_path, model_path, batch_size=16, max_len=128):"""评估BERT情感分析模型。Args:data_path (str): 测试数据的路径。model_path (str): 训练好的模型的路径。batch_size (int): 批次大小。max_len (int): 最大序列长度。"""# 初始化分词器和数据集tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')dataset = SentimentDataset(data_path, tokenizer, max_len=max_len)loader = DataLoader(dataset, batch_size=batch_size)# 加载模型model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))model.eval()# 设备设置device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model.to(device)all_preds = []all_labels = []with torch.no_grad():for batch in tqdm(loader, desc="Evaluating"):input_ids = batch['input_ids'].to(device)attention_mask = batch['attention_mask'].to(device)labels = batch['label'].to(device)outputs = model(input_ids, attention_mask=attention_mask)logits = outputs.logitspreds = torch.argmax(logits, dim=1)all_preds.extend(preds.cpu().numpy())all_labels.extend(labels.cpu().numpy())accuracy = accuracy_score(all_labels, all_preds)precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average='binary')print(f"Accuracy: {accuracy:.4f}")print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}")if __name__ == "__main__":parser = argparse.ArgumentParser(description="Evaluate BERT model for sentiment analysis")parser.add_argument('--data_path', type=str, default='data/test.csv', help='Path to test data')parser.add_argument('--model_path', type=str, default='models/bert_model.pt', help='Path to the trained model')parser.add_argument('--batch_size', type=int, default=16, help='Batch size')parser.add_argument('--max_len', type=int, default=128, help='Maximum sequence length')args = parser.parse_args()evaluate_model(data_path=args.data_path,model_path=args.model_path,batch_size=args.batch_size,max_len=args.max_len)

5.4 推理 (src/inference.py)

import torch
from transformers import BertTokenizer, BertForSequenceClassification
import argparsedef predict_sentiment(text, model_path, max_len=128):"""对输入的文本进行情感预测。Args:text (str): 输入的文本。model_path (str): 训练好的模型的路径。max_len (int): 最大序列长度。Returns:str: 预测的情感类别。"""# 初始化分词器和模型tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))model.eval()# 设备设置device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model.to(device)# 数据预处理inputs = tokenizer(text, return_tensors="pt", truncation=True, padding='max_length', max_length=max_len)inputs = {key: value.to(device) for key, value in inputs.items()}# 模型推理with torch.no_grad():outputs = model(**inputs)logits = outputs.logitsprediction = torch.argmax(logits, dim=1).item()sentiment = "Positive" if prediction == 1 else "Negative"return sentimentif __name__ == "__main__":parser = argparse.ArgumentParser(description="Inference script for sentiment analysis")parser.add_argument('--text', type=str, required=True, help='Input text for sentiment prediction')parser.add_argument('--model_path', type=str, default='models/bert_model.pt', help='Path to the trained model')parser.add_argument('--max_len', type=int, default=128, help='Maximum sequence length')args = parser.parse_args()sentiment = predict_sentiment(text=args.text,model_path=args.model_path,max_len=args.max_len)print(f"Input Text: {args.text}")print(f"Predicted Sentiment: {sentiment}")

6. 项目运行

6.1 一键运行脚本 (run.sh)

#!/bin/bash# 训练模型
python src/train.py --data_path=data/train.csv --model_save_path=models/bert_model.pt# 评估模型
python src/evaluate.py --data_path=data/test.csv --model_path=models/bert_model.pt# 推理示例
python src/inference.py --text="I love this movie!" --model_path=models/bert_model.pt

6.2 单独运行

6.2.1 训练模型
python src/train.py --data_path=data/train.csv --model_save_path=models/bert_model.pt --epochs=3 --batch_size=16
6.2.2 评估模型
python src/evaluate.py --data_path=data/test.csv --model_path=models/bert_model.pt
6.2.3 模型推理
python src/inference.py --text="This product is great!" --model_path=models/bert_model.pt

7. 结果展示

7.1 训练结果

  • 损失下降曲线:可以使用matplotlibtensorboard绘制训练过程中的损失变化。
  • 训练日志:在logs/training.log中记录训练过程。

7.2 模型评估

  • 准确率(Accuracy):模型在测试集上的准确率。
  • 精确率、召回率、F1-score:更全面地评估模型性能。

7.3 推理示例

示例:

python src/inference.py --text="I absolutely love this!" --model_path=models/bert_model.pt

输出:

Input Text: I absolutely love this!
Predicted Sentiment: Positive

8. 注意事项

  • 模型保存与加载:确保模型保存和加载时的路径正确,特别是在使用相对路径时。
  • 设备兼容性:代码中已考虑CPU和GPU的兼容性,确保设备上安装了相应的PyTorch版本。
  • 依赖版本:依赖的库版本可能会影响代码运行,建议使用requirements.txt中指定的版本。

9. 参考资料

  • BERT论文
  • Hugging Face Transformers文档
  • PyTorch官方文档

相关文章:

基于BERT的情感分析

基于BERT的情感分析 1. 项目背景 情感分析(Sentiment Analysis)是自然语言处理的重要应用之一,用于判断文本的情感倾向,如正面、负面或中性。随着深度学习的发展,预训练语言模型如BERT在各种自然语言处理任务中取得了…...

推荐15个2024最新精选wordpress模板

以下是推荐的15个2024年最新精选WordPress模板,轻量级且SEO优化良好,适合需要高性能网站的用户。中文wordpress模板适合搭建企业官网使用。英文wordpress模板,适合B2C网站搭建,功能强大且兼容性好,是许多专业外贸网站的…...

AWTK-WIDGET-WEB-VIEW 实现笔记 (2) - Windows

在 Windows 平台上的实现,相对比较顺利,将一个窗口嵌入到另外一个窗口是比较容易的事情。 1. 创建窗口 这里有点需要注意: 父窗口的大小变化时,子窗口也要跟着变化,否则 webview 显示不出来。创建时窗口的大小先设置…...

Linux四剑客及正则表达式

正则表达式 基础正则(使用四剑客命令时无需加任何参数即可使用) ^ # 匹配以某一内容开头 如:^grep匹配所有以grep开头的行。 $ # 匹配以某一内容结尾 如:grep$ 匹配所有以grep结尾的行。 ^$ # 匹配空行。 . # 匹配…...

ALS 推荐算法案例演示(python)

数学知识补充:矩阵 总结来说: Am*k X Bk*n Cm*n ----至于乘法的规则,是数学问题, 知道可以乘即可,不需要我们自己计算 反过来 Cm*n Am*k X Bk*n ----至于矩阵如何拆分/如何分解,是数学问题,知道可以拆/可以分解即可 ALS 推荐算法案例:电影推…...

labview中连接sql server数据库查询语句

当使用数据库查询功能时,我们需要用到数据库的查询语句,这里已调用sql server为例,我们需要按照时间来查询,这里在正常调用数据库查询语句时,我们需要在前面给他加一个限制条件这里用到了,数据库的查询语句…...

leetcode_二叉树最大深度

对二叉树的理解 对递归调用的理解 对内存分配的理解 基础数据结构(C版本) - 飞书云文档 每次函数的调用 都会进行一次新的栈内存分配 所以lmax和rmax的值不会混在一起 /*** Definition for a binary tree node.* struct TreeNode {* int val;* …...

Elasticsearch 重建索引 数据迁移

Elasticsearch 重建索引 数据迁移 处理流程创建临时索引数据迁移重建索引写在最后 大家都知道,es的索引创建完成之后就不可以再修改了,包括你想更改字段属性或者是分词方式等。那么随着业务数据量的发展,可能会出现需要修改索引,或…...

2411rust,异步函数

原文 Rust异步工作组很高兴地宣布,在实现在特征中使用异步 fn的目标方面取得了重大进度.将在下周发布稳定的Rust1.75版,会包括特征中支持impl Trait注解和async fn. 稳定化 自从RFC#1522在Rust1.26中稳定下来以来,Rust就允许用户按函数的返回类型(一般叫"RPIT")编…...

前端网络性能优化问题

DNS预解析 DNS 解析也是需要时间的&#xff0c;可以通过预解析的⽅式来预先获得域名所对应的 IP。 <link rel"dns-prefetch" href"//abcd.cn"> 缓存 强缓存 在缓存期间不需要请求&#xff0c; state code 为 200 可以通过两种响应头实现&#…...

优选算法——双指针

前言 本篇博客为大家介绍双指针问题&#xff0c;它属于优选算法中的一种&#xff0c;也是一种很经典的算法&#xff1b;算法部分的学习对我们来说至关重要&#xff0c;它可以让我们积累解题思路&#xff0c;同时也可以大大提升我们的编程能力&#xff0c;本文主要是通过一些题…...

【Rabbitmq篇】RabbitMQ⾼级特性----消息确认

目录 前言&#xff1a; 一.消息确认机制 • ⾃动确认 • ⼿动确认 手动确认方法又分为三种&#xff1a; 二. 代码实现&#xff08;spring环境&#xff09; 配置相关信息&#xff1a; 1&#xff09;. AcknowledgeMode.NONE 2 &#xff09;AcknowledgeMode.AUTO 3&…...

开源TTS语音克隆神器GPT-SoVITS_V2版本地整合包部署与远程使用生成音频

文章目录 前言1.GPT-SoVITS V2下载2.本地运行GPT-SoVITS V23.简单使用演示4.安装内网穿透工具4.1 创建远程连接公网地址 5. 固定远程访问公网地址 前言 本文主要介绍如何在Windows系统电脑使用整合包一键部署开源TTS语音克隆神器GPT-SoVITS&#xff0c;并结合cpolar内网穿透工…...

【idea】更换快捷键

因为个人习惯问题需要把快捷键替换一下。我喜欢用CTRLD删除一下&#xff0c;用CTRLY复制一样。恰好这两个快捷键需要互换一下。 打开file——>setting——>Keymap——>Edit Actions 找到CTRLY并且把它删除 找到CTRLD 并且把它删除 鼠标右键添加CTRLY 同样操作在Delet…...

最小的子数组(leetcode 209)

给定一个正整数数组&#xff0c;找到大于等于s的连续的最小长度的区间。 解法一&#xff1a;暴力解法 两层for循环&#xff0c;一个区间终止位置&#xff0c;一个区间起始位置&#xff0c;找到大于等于s的最小区间长度&#xff08;超时了&#xff09; 解法二&#xff1a;双指…...

IDEA-Plugins无法下载插件(网络连接问题-HTTP Proxy Settings)

IDEA-Plugins无法下载插件&#xff08;网络连接问题&#xff09; 改成如下配置&#xff1a; 勾选 添这个url即可&#xff1a;https://plugins.jetbrains.com/ 重启插件中心&#xff0c;问题解决。...

AWTK-WIDGET-WEB-VIEW 发布

awtk-widget-web-view 是通过 webview 提供的接口&#xff0c;实现的 AWTK 自定义控件&#xff0c;使得 AWTK 可以方便的显示 web 页面。 项目网址&#xff1a; https://gitee.com/zlgopen/awtk-widget-web-view webview 提供了一个跨平台的 webview 接口&#xff0c;是一个非…...

Mysql每日一题(if函数)

两种写法if()和case if()函数 select *,if(T.xT.y>T.z and T.xT.z>T.y and T.yT.z>T.x,Yes,No) as triangle from Triangle as T; case方法 select *, case when T.xT.y>T.z and T.xT.z>T.y and T.yT.z>T.x then Yes else No end as triangle from Trian…...

Spring Cloud Alibaba [Gateway]网关。

1 简介 网关作为流量的入口&#xff0c;常用功能包括路由转发、权限校验、限流控制等。而springcloudgateway 作为SpringCloud 官方推出的第二代网关框架&#xff0c;取代了Zuul网关。 1.1 SpringCloudGateway特点: &#xff08;1&#xff09;基于Spring5&#xff0c;支持响应…...

【动手学深度学习Pytorch】2. Softmax回归代码

零实现 导入所需要的包&#xff1a; import torch from IPython import display from d2l import torch as d2l定义数据集参数、模型参数&#xff1a; batch_size 256 # 每次随机读取256张图片 train_iter, test_iter d2l.load_data_fashion_mnist(batch_size) # 将展平每个…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...