当前位置: 首页 > news >正文

2.STM32之通信接口《精讲》之USART通信

有关通信详解进我主页观看其他文章!
【免费】SPIIICUARTRS232/485-详细版_UART、IIC、SPI资源-CSDN文库

通过以上可以看出。根据电频标准,可以分为TTL电平,RS232电平,RS485电平,这些本质上都属于串口通信。有区别的仅是电平标准不一样,TTL电平3.3V代表逻辑1,0V代表逻辑0

你所提到的电平标准(TTL、RS232、RS485)确实是串口通信中常见的电压标准,它们本质上都涉及到数据传输中的电平定义,但它们在具体实现上有一些关键的差异。下面是每种电平标准的详细说明:

1. TTL电平(Transistor-Transistor Logic)

  • 电压范围
    • 逻辑1:+3.3V 或 +5V(通常为+5V)
    • 逻辑0:0V
  • 特点
    • TTL电平广泛用于微控制器、单片机等系统中,因其高电压(+5V)和较低的功耗而成为常见的通信方式。
    • TTL信号通常只能通过两根线传输,且电压变化速度较快。
    • 易于实现与逻辑电路直接兼容,但传输距离有限。

2. RS232电平(Recommended Standard 232)

  • 电压范围
    • 逻辑1(标识):-3V 到 -15V
    • 逻辑0(空间):+3V 到 +15V
    • (0V表示空闲状态)
  • 特点
    • RS232常用于点对点的串行通信,较长的传输距离和较高的抗干扰能力。
    • 电压较高,适用于较长的传输距离(几十米),并且常见于计算机与外设的连接(如调制解调器、串口打印机等)。
    • RS232信号传输是单端的,因此更容易受到噪声的干扰,尤其在长距离传输时。

3. RS485电平(Recommended Standard 485)

  • 电压范围
    • 逻辑1:+2V 到 +6V(差分信号)
    • 逻辑0:-2V 到 -6V(差分信号)
    • (0V表示空闲状态)
  • 特点
    • RS485使用差分信号,这意味着它使用两条信号线,并通过两线间的电压差来传输数据。相比单端信号传输,差分信号对噪声具有更强的抗干扰能力。
    • RS485支持更长的传输距离(最大可达1200米),并且能够实现多点通信,适用于多台设备的串行通信(如工业自动化、远程监控系统等)。
    • 需要注意的是,RS485的电平变化是差分的,即信号线之间的电压差决定逻辑1和逻辑0。

总结:

  • TTL:用于短距离、高速通信,适合微控制器和简单设备之间的通信,电平标准是+5V(或+3.3V)。
  • RS232:常见于计算机和外设之间的通信,适合中等距离传输,电平标准在±3V到±15V之间。
  • RS485:适合长距离、多点通信,电平通过差分信号来传输,电压范围为±2V到±6V。

这三种电平标准都属于串口通信(Serial Communication),而它们之间的主要区别就在于电压范围、传输距离、抗干扰能力以及是否支持多点通信等方面

在串口通信中,数据帧(Data Frame)是数据传输的基本单位,通常由起始位、数据位、校验位停止位组成。每个部分在数据传输中都有特定的功能。下面是各个部分的详细解释,并附上几个示例:

1. 波特率(Baud Rate)

  • 定义:波特率表示串口通信的速率,单位是波特(baud),即每秒钟传输的符号(或比特)数量。波特率越高,传输速度越快。
  • 常见波特率值:9600, 19200, 38400, 57600, 115200(bps)。
  • 例子:波特率为9600,意味着每秒钟最多可以传输9600个比特。

2. 起始位(Start Bit)

  • 定义:每个数据帧的开始通常由一个起始位来标识。起始位的电平通常固定为低电平(0),这有助于接收设备判断数据帧的开始。
  • 作用:起始位是用来告诉接收方数据帧的开始位置。通常为1个比特。
  • 例子:假设有一个数据帧,起始位就是数据帧的第一个信号,通常为低电平(0),如:0

3. 数据位(Data Bits)

  • 定义:数据位是实际传输的数据部分,通常包括5、6、7或8个比特(最常见的是8位)。它们按照顺序表示待传输的信息。
  • 作用:数据位传输的是实际的信息,每一位为一个比特(0或1),并且通常低位先行,即数据的低位(LSB,Least Significant Bit)在前。
  • 例子:假设我们传输的8位数据为10101010,那么数据位的内容就是10101010

4. 校验位(Parity Bit)

  • 定义:校验位是用于数据验证的一位,它根据数据位的值来决定。其目的是检查数据在传输过程中是否出现错误。常见的校验方式有奇偶校验(Even Parity、Odd Parity)和无校验(None)。
    • 无校验(None):不使用校验位。
    • 奇校验(Odd Parity):使得数据位和校验位的1的个数为奇数。
    • 偶校验(Even Parity):使得数据位和校验位的1的个数为偶数。
  • 作用:校验位能够帮助接收方验证接收到的数据是否正确。若检测到错误,则可以请求重新传输。
  • 例子:如果数据位为10101010,并且使用偶校验(Even Parity),由于数据中1的个数是4个(偶数),因此校验位为0;若是奇校验(Odd Parity),校验位将是1,以使得1的个数为奇数。

5. 停止位(Stop Bit)

  • 定义:停止位用于标识数据帧的结束,通常为高电平(1),它的作用是为接收方提供数据帧之间的间隔,确保数据的正确分割。
  • 作用:停止位确保接收方能够正确地识别每个数据帧的结束位置,并准备接收下一个数据帧。停止位的长度通常是1、1.5或2个比特。
  • 例子:在一个数据帧的最后,停止位是1个或2个比特的高电平(1)。例如,如果使用1个停止位,则数据帧的结束就是1

数据帧的组成

假设我们使用8个数据位,1个校验位,1个停止位的配置,波特率为9600,下面是一个具体的例子:

示例1:无校验位

假设我们要发送的数据是10101010,以下是一个数据帧的组成:

  • 起始位0(低电平,标识数据的开始)
  • 数据位10101010
  • 校验位(不使用校验位)
  • 停止位1(高电平,标识数据的结束)

因此,整个数据帧是:

 

复制代码

0 10101010 1

表示:起始位(0) + 数据位(10101010) + 停止位(1)

示例2:奇校验

假设我们要发送的数据是1100101,并且使用奇校验,则数据帧如下:

  • 起始位0
  • 数据位1100101
  • 校验位:因为数据中1的个数是3个(奇数),为了使总数保持奇数,所以校验位为0
  • 停止位1

因此,整个数据帧是:

 

复制代码

0 1100101 0 1

表示:起始位(0) + 数据位(1100101) + 校验位(0) + 停止位(1)

示例3:偶校验

假设我们要发送的数据是1010110,并且使用偶校验,则数据帧如下:

  • 起始位0
  • 数据位1010110
  • 校验位:因为数据中1的个数是4个(偶数),为了保持偶数,校验位应为0
  • 停止位1

因此,整个数据帧是:

 

复制代码

0 1010110 0 1

表示:起始位(0) + 数据位(1010110) + 校验位(0) + 停止位(1)

总结

  • 波特率:定义串口通信速率(如9600bps、115200bps等)。
  • 起始位:表示数据帧的开始,通常为低电平(0)。
  • 数据位:传输的实际数据,常见为5到8位,低位先行。
  • 校验位:用于验证数据的正确性,可以是奇校验、偶校验或无校验。
  • 停止位:标识数据帧的结束,通常为1或2个比特的高电平(1)。

通过这些组成部分,串口通信能够确保数据的可靠传输。



精彩继续----------------------------------------------32.STM32之通信接口《精讲》之USART通信,实战教程

相关文章:

2.STM32之通信接口《精讲》之USART通信

有关通信详解进我主页观看其他文章!【免费】SPIIICUARTRS232/485-详细版_UART、IIC、SPI资源-CSDN文库 通过以上可以看出。根据电频标准,可以分为TTL电平,RS232电平,RS485电平,这些本质上都属于串口通信。有区别的仅是…...

Bootstrap和jQuery开发案例

目录 1. Bootstrap和jQuery简介及优势2. Bootstrap布局与组件示例:创建一个响应式的表单界面 3. jQuery核心操作与事件处理示例:使用jQuery为表单添加交互 4. Python后端实现及案例代码案例 1:用户登录系统Flask后端代码前端代码 5. 设计模式…...

Qt 之 qwt和QCustomplot对比

QWT(Qt Widgets for Technical Applications)和 QCustomPlot 都是用于在 Qt 应用程序中绘制图形和图表的第三方库。它们各有优缺点,适用于不同的场景。 以下是 QWT 和 QCustomPlot 的对比分析: 1. 功能丰富度 QWT 功能丰富&a…...

【STM32】MPU6050简介

文章目录 MPU6050简介MPU6050关键块带有16位ADC和信号调理的三轴MEMS陀螺仪具有16位ADC和信号调理的三轴MEMS加速度计I2C串行通信接口 MPU6050对应的数据手册:MPU6050 陀螺仪加速度计 链接: https://pan.baidu.com/s/13nwEhGvsfxx0euR2hMHsyw?pwdv2i6 提取码: v2i6…...

Oracle 单机及 RAC 环境 归档模式及路径修改

Oracle 数据库的使用过程中经常会根据需求的不同而调整归档模式,也经常会修改归档文件存放路径。 下面分别演示单机及 RAC 环境下修改归档模式及路径的操作步骤。 一、单机环境 1.查询当前归档模式及路径 SQL> archive log list Database log mode …...

抽象java入门1.5.3.1——类的进阶

前言:在研究神技代码Hello word的时候,发现了一个重大公式bug,在代码溯源中,我发现了一个奇怪的东西,就是OUT不是类中类(不是常规类的写法) 内容总结: 代码运行的顺序复习 正片开始…...

python——模块 迭代器 正则

一、python模块 先创建一个 .py 文件,这个文件就称之为 一个模块 Module。 使用模块的优点: 模块化编程,多文件编程 1.2 模块的使用 1.2.1 import语句 想要B.py文件中,使用A.py文件,只需要在B.py文件中使用关键字…...

QT仿QQ聊天项目,第三节,实现聊天界面

一,界面控件示意图 界面主要由按钮QPushButton,标签QLabel,列表QListWidget 要注意的是QListWidget既是实现好友列表的控件,也是实现聊天气泡的控件 二,控件样式 QPushButton#btn_name {border:none;}QPushButton#btn_close {border:1px;bac…...

Linux-何为CentOS

今年公司做的 POC 项目中,越来越多地听到客户开始或已经将系统迁移到麒麟、统信、openEuler,但还是有很多客户在用CentOS 7,或者和CentOS 7兼容的其他Linux。今天把CentOS 7相关概念统一整理下供后续参考使用 何为CentOS CentOS — Communit…...

C++中的 std::optional

std::optional<T>是 C17 中的一个标准库组件&#xff0c;optional <T>对象默认是空的&#xff0c;也就是处于无效状态&#xff0c;给它赋值后因为里面有了元素&#xff0c;就变成了有效状态。 1.引入背景 c函数常用返回值表示函数是否执行成功。如返回nullptr表示…...

猫狗识别之BUG汇总

一、github登不上去问题 下载watt toolkit 下载地址&#xff1a;https://steampp.net/ 可以下载后加速&#xff0c;访问github 二、猫狗总体参考核心 B哥的博客 https://github.com/bubbliiiing/classification-keras?tabreadme-ov-file 三、CSDN很多会员才能阅读问题 根据…...

【论文复现】自动化细胞核分割与特征分析

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀自动化细胞核分割与特征分析 引言1. 效果展示2. HoverNet概述3. HoverNet原理分析整体网络框架实例分割原理 4. HoverNet评估结果5. 复现过程…...

排序算法 -快速排序

文章目录 1. 快速排序&#xff08;Quick Sort&#xff09;1.1、 简介1.2、 快速排序的步骤 2. Hoare 版本2.1、 基本思路1. 分区&#xff08;Partition&#xff09;2. 基准选择&#xff08;Pivot Selection&#xff09;3. 递归排序&#xff08;Recursive Sorting&#xff09; 2…...

K8S 查看pod节点的磁盘和内存使用情况

查看某个节点的磁盘使用率&#xff1a; kubectl exec -it pod名称 -n 命名空间 – df -h 查询所有节点的已使用内存&#xff1a; kubectl top pods --all-namespaces | grep itsm 查询某个节点的总内存&#xff0c; kubectl describe pod itsr-domain-59f4ff5854-hzb68 --nam…...

华为HCIP——MSTP/RSTP与STP的兼容性

一、MSTP/RSTP与STP的兼容性的原理&#xff1a; 1.BPDU版本号识别&#xff1a;运行MSTP/RSTP协议的交换机会根据收到的BPDU&#xff08;Bridge Protocol Data Unit&#xff0c;桥协议数据单元&#xff09;版本号信息自动判断与之相连的交换机的运行模式。如果收到的是STP BPDU…...

AI 大模型如何重塑软件开发流程:现状与未来展望

随着人工智能技术的飞速发展&#xff0c;AI 大模型的出现正在深刻改变软件开发行业的传统模式。从代码生成到智能测试&#xff0c;AI 已渗透到软件开发的各个环节&#xff0c;为开发者提供了前所未有的效率提升&#xff0c;同时也带来了全新的挑战与思考。在本文中&#xff0c;…...

3步实现贪吃蛇

方法很简单&#xff0c;打开页面&#xff0c;复制&#xff0c;粘贴 一.整体思维架构 我们根据游戏的开始&#xff0c;运行&#xff0c;结束&#xff0c;将整个游戏划分成三个部分。在每个部分下面又划分出多个功能&#xff0c;接下来我们就根据模块一一实现功能。 二.Gamesta…...

华东师范大学数学分析第五版PDF习题答案上册及下册

“数学分析”是数学专业最重要的一门基础课程&#xff0c;也是报考数学类专业硕士研究生的专业考试科目。为了帮助、指导广大读者学好这门课程&#xff0c;编者编写了与华东师范大学数学科学学院主编的《数学分析》(第五版)配套的辅导用书&#xff0c;以帮助读者加深对基本概念…...

MySQL之联合查询

前文我们了解到了数据库设计的范式要求&#xff0c;故生活中很多相互关联的数据被拆分开来&#xff0c;但彼此之间通过某种条件链接&#xff0c;此文联合查询就是通过多表之间的连接关系&#xff0c;来查询我们想要的数据&#xff0c;即 《联合查询》 1. 联合查询简介 1.1 为什…...

[C/C++] 定位新表达式 placement new

在C中&#xff0c;表达式 new (ptr) T(); 展示了一种特殊的内存分配和对象构造方式&#xff0c;这被称为定位新表达式&#xff08;placement new&#xff09;。 通常&#xff0c;当我们使用 new 关键字时&#xff0c;它会在堆上动态分配内存&#xff0c;并调用相应的构造函数来…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...