对数几率回归
对数几率回归简介
对数几率回归(Logistic Regression)是一种用于解决分类问题的经典统计模型,其核心思想是利用逻辑函数(Sigmoid函数)将线性回归模型的输出值映射到概率范围 [0, 1],从而实现分类预测。对数几率回归特别适合用于二分类问题。
模型表达式
对数几率回归的概率预测公式为:
其中:
- w为权重向量,x 为输入特征向量,b为偏置项
是 Sigmoid 函数
目标是通过训练确定参数 w 和 b,以最大化模型对数据的预测能力。
极大似然函数与交叉熵损失
极大似然函数
在训练过程中,假设数据集包含 n 个样本,目标是最大化样本标签 y 的条件概率的乘积,即似然函数:
为简化计算,通常对似然函数取对数,得到对数似然函数:
交叉熵损失
对数似然函数的负值称为交叉熵损失,是对数几率回归优化的目标函数:
通过最小化交叉熵损失函数,可以训练出最优的模型参数。
在信息论中涉及信息熵与交叉熵的概念。信息熵越大,表示随机变量的不确定性越大。相对熵=信息熵+交叉熵,相对熵用来度量两个随机变量之间的差异。
参数优化方法
梯度下降法
使用梯度下降法(Gradient Descent)通过迭代更新参数 w 和 b 来最小化损失函数。更新公式为:
其中 η为学习率。
牛顿法
牛顿法是一种二阶优化方法,利用梯度和二阶导数(Hessian 矩阵)更新参数,相较于梯度下降法收敛更快。更新公式为:
其中:
- ∇ℓ 是损失函数的梯度
- H 是 Hessian 矩阵,定义为损失函数的二阶导数矩阵
优点: 牛顿法可以显著加快优化速度,特别是在凸优化问题中表现出色。
缺点: 计算 Hessian 矩阵和求逆的开销较大,不适合大规模数据。
相关文章:
对数几率回归
对数几率回归简介 对数几率回归(Logistic Regression)是一种用于解决分类问题的经典统计模型,其核心思想是利用逻辑函数(Sigmoid函数)将线性回归模型的输出值映射到概率范围 [0, 1],从而实现分类预测。对数…...
docker 配置同宿主机共同网段的IP 同时通过通网段的另一个电脑实现远程连接docker
docker配置网络 #宿主机执行命令 ifconfig 查询对应的主机ip 子网掩码 网关地址 #[网卡名称]:inet[主机IP] netmask[子网掩码] broadcast[网关地址]这里需要重点关注:eno1[网卡名称]以及【192.168.31.225】网关地址 在宿主机执行docker命令创建一个虚拟…...
4-7-1.C# 数据容器 - LinkedList(LinkedList 的定义、LinkedList 结点的遍历、LinkedList 的常用方法)
LinkedList 概述 LinkedList<T> 通过节点(Node)来存储数据,每个节点包含数据和指向下一个节点的引用 LinkedList<T> 存储的元素是可重复的 LinkedList<T> 支持泛型,可以指定存储的元素的类型 LinkedList<…...
「三」体验HarmonyOS端云一体化开发模板——使用DevEco Studio直接创建端云一体化工程
关于作者 白晓明 宁夏图尔科技有限公司董事长兼CEO、坚果派联合创始人 华为HDE、润和软件HiHope社区专家、鸿蒙KOL、仓颉KOL 华为开发者学堂/51CTO学堂/CSDN学堂认证讲师 开放原子开源基金会2023开源贡献之星 「目录」 「一」HarmonyOS端云一体化概要 「二」体验HarmonyOS端云一…...
确保以管理员权限运行 Visual Studio 开发者命令提示符
文章目录 解决方法:1. 以管理员身份运行命令提示符2. 改变目录权限3. 改变项目目录位置4. 检查文件系统权限 总结: ********************************************************************** ** Visual Studio 2022 Developer Command Prompt v17.12.0 …...
命令执行简单(棱角社区有毒)
前言:小迪安全2022第一节反弹shell,小迪用的是两台都是云服务器,没有服务器可以在自己的主机上搭建也是可以的,主机上搭两个网站 思路:生成一个木马文件,下载到本机,然后利用本机上传到目标主机…...
Keil基于ARM Compiler 5的工程迁移为ARM Compiler 6的工程
环境: keil版本为5.38,版本务必高于5.30 STM32F4的pack包版本要高于2.9 软件包下载地址:https://zhuanlan.zhihu.com/p/262507061 一、更改Keil中编译器 更改后编译,会报很多错,先不管。 二、更改头文件依赖 观察…...
Kafka-创建topic源码
一、命令创建topic kafka-topics --create --topic quickstart-events --bootstrap-server cdh1:9092 --partitions 2 --replication-factor 2 二、kafka-topics脚本 exec $(dirname $0)/kafka-run-class.sh org.apache.kafka.tools.TopicCommand "$" 脚本中指定了…...
【网络安全】(一) 0成本添加访问级监控
互联网的安全感这个概念源于阿里。顾名思义,让互联网的用户对于web产品能够产生足够的信任和依赖。特别是涉及到用户资金交易的站点,一次严重的用户资料泄露就可以彻底毁掉你的品牌。 然而当前阶段除了bat大部分互联网行业的企业对于网络安全给的重视都…...
【Three.js基础学习】26. Animated galaxy
前言 shaders实现星系 课程回顾 使用顶点着色器为每个粒子设置动画 a属性 , u制服 ,v变化 像素比:window.devicePixelRatio 自动从渲染器检索像素比 renderer.getPixelRatio() 如何尺寸衰减, 放大缩小视角时,粒子都是同…...
vscode使用ssh配置docker容器环境
1 创建容器,并映射主机和容器的指定ssh服务端口 2 进入容器 docker exec -it <容器ID> /bin/bash 3在容器中安装ssh服务 apt-get update apt-get install openssh-server 接着修改ssh文件信息,将容器的10008端口暴露出来允许root用户使用ssh登录 vim /…...
NLP论文速读(EMNLP 2024)|动态奖励与提示优化来帮助语言模型的进行自我对齐
论文速读|Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models 论文信息: 简介: 本文讨论的背景是大型语言模型(LLMs)的自我对齐问题。传统的LLMs对齐方法依赖于昂贵的训练和人类偏好注释&am…...
【LeetCode】167. 两数之和 II - 输入有序数组
描述 给定一个下标从 1 开始的整数数组numbers,该数组已按非递减顺序排列,请从数组中找出满足相加之和等于目标数target的两个数。如果这两个数分别是numbers[index1]和numbers[index2],返回整数数组[index1, index2]。 只存在唯一答案&#…...
Getx:GetxController依赖管理02,Binding绑定全局控制器(懒加载Controller)
在使用GetX 状态管理器的时候,如果每个页面都手动实例化一个控制器就太麻烦了, Binding 的作用就是所有需要进行状态管理的控制器进行统一初始化 创建全局控制器Binding import package:get/get.dart; import ../controllers/counter.dart; // 同上一篇内…...
leetcode 找不同
389. 找不同 已解答 简单 相关标签 相关企业 给定两个字符串 s 和 t ,它们只包含小写字母。 字符串 t 由字符串 s 随机重排,然后在随机位置添加一个字母。 请找出在 t 中被添加的字母。 示例 1: 输入:s "abcd"…...
2025 - 生信信息学 - GEO数据分析 - RF分析(随机森林)
GEO数据分析 - RF分析(随机森林) 01 准备数据文件 #install.packages("randomForest")#引用包 library(randomForest) set.seed(123456)inputFile"diffGeneExp.txt" #输入文件 setwd("/Users/wangyang/Desktop/BCBM/02ra…...
Matlab深度学习(四)——AlexNet卷积神经网络
网络搭建参考:手撕 CNN 经典网络之 AlexNet(理论篇)-CSDN博客 在实际工程应用中,构建并训练一个大规模的卷积神经网络是比较复杂的,需要大量的数据以及高性能的硬件。如果通过训练好的典型网络稍加改进…...
etcd defrag
场景 prometheus监控告警,告警信息如下 etcd cluster "kube-etcd": database size in use on instance xx is 33.45% of the actual allocated disk space, please run defragmentation (e.g. etcdctl defrag) to retrieve the unused fragmented disk space.处理…...
golang语言整合jwt+gin框架实现token
1.下载jwt go get -u github.com/dgrijalva/jwt-go2.新建生成token和解析token文件 2.1 新建common文件夹和jwtConfig文件夹 新建jwtconfig.go文件 2.2 jwtconfig.go文件代码 /* Time : 2021/8/2 下午3:03 Author : mrxuexi File : main Software: GoLand */ package jwtC…...
数据治理、数据素养和数据质量管理:文献综述
注意:这并不是正式发表的论文,只是一篇用来交作业的文章 摘要 随着数据时代的到来,数据治理、数据素养和数据质量管理成为组织数据管理中的三大核心概念。本文基于相关研究与实践,对这三个领域进行全面综述,探讨它…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
