实现了两种不同的图像处理和物体检测方法
这段代码实现了两种不同的图像处理和物体检测方法:一种是基于Canny边缘检测与轮廓分析的方法,另一种是使用TensorFlow加载预训练SSD(Single Shot Multibox Detector)模型进行物体检测。
1. Canny边缘检测与轮廓分析:
首先,通过OpenCV进行图像处理,找到矩形物体并进行绘制:
image = cv2.imread('U:/1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 高斯模糊
blurred = cv2.GaussianBlur(gray, (5, 5), 0)# Canny边缘检测
edges = cv2.Canny(blurred, 50, 150)# 查找轮廓
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)for contour in contours:# 逼近多边形epsilon = 0.04 * cv2.arcLength(contour, True)approx = cv2.approxPolyDP(contour, epsilon, True)# 如果轮廓有4个点且是矩形if len(approx) == 4:# 计算矩形的长宽比x, y, w, h = cv2.boundingRect(approx)aspect_ratio = float(w) / hif 0.8 < aspect_ratio < 1.2: # 如果长宽比接近1,表示是矩形# 绘制矩形cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)# 显示结果
cv2.imshow("Detected Rectangles", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
- 步骤:
- 灰度化:通过
cv2.cvtColor()将图像转换为灰度图。 - 高斯模糊:使用
cv2.GaussianBlur()进行模糊处理,减少噪声。 - Canny边缘检测:通过
cv2.Canny()检测图像中的边缘。 - 查找轮廓:使用
cv2.findContours()获取图像的外部轮廓。 - 轮廓逼近:通过
cv2.approxPolyDP()简化轮廓形状,逼近为多边形。 - 筛选矩形:通过检测轮廓点数为4的多边形,计算长宽比并判断其是否接近正方形(长宽比介于0.8和1.2之间)。
- 绘制矩形:如果符合条件,使用
cv2.drawContours()绘制绿色矩形框。
- 灰度化:通过
2. SSD模型物体检测:
接下来,使用TensorFlow加载预训练的SSD模型,并在图像上进行物体检测,最后绘制检测框:
# 加载预训练的SSD模型
model = tf.saved_model.load('ssd_mobilenet_v2_coco/saved_model')# 读取图片
img = cv2.imread('image_path')
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
input_tensor = tf.convert_to_tensor(img_rgb)
input_tensor = input_tensor[tf.newaxis, ...] # 扩展维度# 执行推理
model_fn = model.signatures['serving_default']
output_dict = model_fn(input_tensor)# 获取检测结果
boxes = output_dict['detection_boxes'].numpy()[0] # 边界框
scores = output_dict['detection_scores'].numpy()[0] # 置信度
classes = output_dict['detection_classes'].numpy()[0] # 标签# 筛选出矩形
threshold = 0.5
for i in range(len(scores)):if scores[i] > threshold:y1, x1, y2, x2 = boxes[i]x1, y1, x2, y2 = int(x1 * img.shape[1]), int(y1 * img.shape[0]), int(x2 * img.shape[1]), int(y2 * img.shape[0])cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)# 显示图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb)
plt.axis('off')
plt.show()
- 步骤:
- 加载SSD模型:通过
tf.saved_model.load()加载一个预训练的SSD模型(ssd_mobilenet_v2_coco)。 - 读取图像:使用
cv2.imread()加载图像,并将其转换为RGB格式。 - 图像处理:将图像转换为TensorFlow的张量格式,并扩展为批处理维度。
- 推理过程:通过模型的
signatures['serving_default']执行推理,获得检测的边界框、置信度和标签。 - 筛选结果:根据置信度(
scores)大于设定的阈值(0.5)进行筛选。 - 绘制边界框:使用
cv2.rectangle()绘制绿色矩形框,将检测到的物体框出。 - 显示图像:使用
matplotlib.pyplot显示处理后的图像。
- 加载SSD模型:通过
总结:
- Canny边缘检测与轮廓分析:通过对图像边缘进行检测,使用轮廓分析找出矩形,并通过长宽比进一步筛选目标。
- SSD物体检测:利用TensorFlow预训练的SSD模型进行物体检测,并在图像中绘制检测到的物体框。
这两种方法可以结合使用,在某些应用中,如检测特定形状(矩形)和使用深度学习检测物体时,互为补充。
相关文章:
实现了两种不同的图像处理和物体检测方法
这段代码实现了两种不同的图像处理和物体检测方法:一种是基于Canny边缘检测与轮廓分析的方法,另一种是使用TensorFlow加载预训练SSD(Single Shot Multibox Detector)模型进行物体检测。 1. Canny边缘检测与轮廓分析: …...
如何在MindMaster思维导图中制作PPT课件?
思维导图是一种利用色彩、图画、线条等图文并茂的形式,来帮助人们增强知识或者事件的记忆。因此,思维导图也被常用于教育领域,比如:教学课件、读书笔记、时间管理等等。那么,在MindMaster免费思维导图软件中࿰…...
ORIN NX 16G安装中文输入法
刷机版本为jetpack5.14.刷机之后预装了cuda、cudnn、opencv、tensorrt等,但是发现没有中文输入,所以记录一下安装流程。 jetson NX是arm64架构的,sougoupinyin只支持adm架构的,所以要选择安装Google pinyin 首先打开终端&#x…...
【金融风控项目-07】:业务规则挖掘案例
文章目录 1.规则挖掘简介2 规则挖掘案例2.1 案例背景2.2 规则挖掘流程2.3 特征衍生2.4 训练决策树模型2.5 利用结果划分分组 1.规则挖掘简介 两种常见的风险规避手段: AI模型规则 如何使用规则进行风控 **使用一系列逻辑判断(以往从职人员的经验)**对客户群体进行区…...
退款成功订阅消息点击后提示订单不存在
问题表现: 退款成功发送的小程序订阅消息点击进入后提示订单不存在。 修复方法: 1.打开文件app/services/message/notice/RoutineTemplateListService.php 2.找到方法sendOrderRefundSuccess 3.修改图中红圈内的链接地址 完整方法代码如下 /*** 订…...
实验一 顺序结构程序设计
《大学计算机﹣C语言版》实验报告 实验名称 实验一 顺序结构程序设计 实验目的 (1)掌握C语言中常量和变量的概念。 (2)掌握C语言中常见的数据类型。 (3)掌握C语言中变量的定义和赋值方法。 …...
Elasticsearch搜索流程及原理详解
Elasticsearch搜索流程及原理详解 1. Elasticsearch概述1.1 简介1.2 核心特性1.3 应用场景2. Elasticsearch搜索流程2.1 搜索请求的发起2.2 查询的执行2.3 结果的聚合与返回3. Elasticsearch原理详解3.1 倒排索引3.2 分布式架构3.3 写入流程3.4 读取流程4. 技术细节与操作流程4…...
芯片之殇——“零日漏洞”(文后附高通64款存在漏洞的芯片型号)
芯片之殇——“零日漏洞”(文后附高通64款存在漏洞的芯片型号) 本期是平台君和您分享的第113期内容 前一段时间,高通公司(Qualcomm)发布安全警告称,提供的60多款芯片潜在严重的“零日漏洞”,芯片安全再一次暴露在大众视野。 那什么是“零日漏洞”?平台君从网上找了一段…...
【gitlab】gitlabrunner部署
1、下载镜像 docker pull gitlab/gitlab-runner:latest 2、启动gitrunner容器 docker run -d --name gitlab-runner --restart always \ -v /root/gitrunner/config:/etc/gitlab-runner \ ///gitlab-runner的配置目录,挂载在宿主机上方便修改,里面有config.…...
Flink监控checkpoint
Flink的web界面提供了一个选项卡来监控作业的检查点。这些统计信息在任务终止后也可用。有四个选项卡可以显示关于检查点的信息:概述(Overview)、历史(History)、摘要(Summary)和配置(Configuration)。下面依次来看这几个选项。 Overview Tab Overview选项卡列出了以…...
Ribbon 入门实战指南
Ribbon 是 Netflix 开发的一个开源项目,用于实现客户端负载均衡功能。它在微服务架构中广泛使用,并且是 Spring Cloud 生态中的重要组成部分。本文将带你从基础入门,逐步掌握如何在 Spring Cloud 项目中使用 Ribbon 实现客户端负载均衡。 1 负…...
uniapp: 微信小程序包体积超过2M的优化方法(主包从2.7M优化到1.5M以内)
一、问题描述 在使用uniapp进行微信小程序开发时,经常会遇到包体积超过2M而无法上传: 二、解决方案 目前关于微信小程序分包大小有以下限制: 整个小程序所有分包大小不超过 30M(服务商代开发的小程序不超过 20M) 单个…...
【百日算法计划】:每日一题,见证成长(026)
题目 给定一个包含正整数、加()、减(-)、乘(*)、除(/)的算数表达式(括号除外),计算其结果。 表达式仅包含非负整数,, - ,,/ 四种运算符和空格 。 整数除法仅保留整数部分。 * * 示例 1: 输入: “32X2” 输出: 7 import…...
【大模型】prompt实践总结
文章目录 怎么才算是好的prompt设计准则基本原则精炼原则(奥卡姆剃刀准则)具体原则真实操作技巧指定角色增加fewshots列表化代码化强调需求真实迭代大模型优化情形任务的定义和评估标准似乎可以再明确一下出现了一些之前没有考虑过的特殊情况,可以重新组织语言优化Prompt来处…...
在Qt(以及C++)中, 和 * 是两个至关重要的符号--【雨露均沾】
在Qt(以及C)中,& 和 * 是两个至关重要的符号,它们用于处理引用和指针。我们将逐个解释这两个符号,并提供简单示例来说明它们的用法。 1. 引用(&) 定义: 引用是一种别名,它不…...
本地部署Apache Answer搭建高效的知识型社区并一键发布到公网流程
文章目录 前言1. 本地安装Docker2. 本地部署Apache Answer2.1 设置语言选择简体中文2.2 配置数据库2.3 创建配置文件2.4 填写基本信息 3. 如何使用Apache Answer3.1 后台管理3.2 提问与回答3.3 查看主页回答情况 4. 公网远程访问本地 Apache Answer4.1 内网穿透工具安装4.2 创建…...
Ubuntu常见命令
关于export LD_LIBRARY_PATHcmake默认地址CMakelists.txt知识扩充/home:挂载新磁盘到 /home 子目录 关于export LD_LIBRARY_PATH 程序运行时默认的依赖库的位置包括lib, /usr/lib ,/usr/local/lib 通过命令export LD_LIBRARY_PATHdesired_path:$LD_LIBRARY_PATH追加…...
网络安全领域的最新动态和漏洞信息
网络安全领域的最新动态和漏洞信息涉及多个方面,以下是对这些信息的详细归纳: 一、网络安全领域最新动态世界互联网大会乌镇峰会召开2024年11月19日至22日,以“拥抱以人为本、智能向善的数字未来——携手构建网络空间命运共同体”为主题的202…...
华为开源自研AI框架昇思MindSpore应用案例:人体关键点检测模型Lite-HRNet
如果你对MindSpore感兴趣,可以关注昇思MindSpore社区 一、环境准备 1.进入ModelArts官网 云平台帮助用户快速创建和部署模型,管理全周期AI工作流,选择下面的云平台以开始使用昇思MindSpore,获取安装命令,安装MindSpo…...
每日OJ题_牛客_天使果冻_递推_C++_Java
目录 牛客_天使果冻_递推 题目解析 C代码 Java代码 牛客_天使果冻_递推 天使果冻 描述: 有 n 个果冻排成一排。第 i 个果冻的美味度是 ai。 天使非常喜欢吃果冻,但她想把最好吃的果冻留到最后收藏。天使想知道前 x个果冻中,美味…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
