当前位置: 首页 > news >正文

HarmonyOS NEXT应用元服务开发Intents Kit(意图框架服务)习惯推荐方案概述

一、习惯推荐是HarmonyOS学习用户的行为习惯后做出的主动预测推荐。
1.开发者将用户在应用/元服务内的使用行为向HarmonyOS共享,使得HarmonyOS可以基于共享的数据学习用户的行为习惯。
2.在HarmonyOS学习到用户的行为习惯后,会给用户推荐相应功能,并且尝试补充详细功能参数,减少用户执行任务的步骤。
以听音乐为例,意图框架设计了统一的意图——播放歌单意图,该意图可以让应用/元服务与HarmonyOS交互。
当用户使用应用/元服务播放歌单时,应用/元服务可以向Intents Kit共享该意图,并提供一些用于学习的特征,例如播放开始/结束时间、播放时长、歌单名等。HarmonyOS会结合底层采集的时间、空间、设备状态等数据共同理解用户行为上下文。最后HarmonyOS结合应用/元服务历史上共享过的数据重建响应意图任务并进行预测推荐,例如在用户每天早上上车后,为其推荐“每日推荐”歌单卡片,用户点击实现一键播放。
二、典型场景
当前习惯推荐可在小艺建议入口分发,在不同垂域中,填充功能详细参数或内容的逻辑不同,主要典型场景可分为常用接续、常用复访、常用推新三类。

HarmonyOS NEXT应用元服务开发Intents Kit(意图框架服务)习惯推荐方案概述-鸿蒙开发者社区

以常看视频续播为例,系统预测当前用户使用华为视频的播放视频功能概率较高,会选择用户最近观看且还没看完的视频内容来补充功能细节,在小艺建议中以模板卡形式推荐展示,用户点击卡片后,实现一步跳转进应用的视频播放页。
卡片展示效果
意图框架提供各垂域习惯推荐在小艺建议中展示使用的标准模板卡片,开发者无需开发展示卡片。在展示模板上,会展示应用/元服务名称与logo和内容必要信息,比如音乐名、音乐图片,这类参数需要开发者共享到系统。
以下为播放歌曲-习惯推荐的卡片示例。

HarmonyOS NEXT应用元服务开发Intents Kit(意图框架服务)习惯推荐方案概述-鸿蒙开发者社区

本文主要参考鸿蒙官方网站材料

相关文章:

HarmonyOS NEXT应用元服务开发Intents Kit(意图框架服务)习惯推荐方案概述

一、习惯推荐是HarmonyOS学习用户的行为习惯后做出的主动预测推荐。 1.开发者将用户在应用/元服务内的使用行为向HarmonyOS共享,使得HarmonyOS可以基于共享的数据学习用户的行为习惯。 2.在HarmonyOS学习到用户的行为习惯后,会给用户推荐相应功能&#x…...

【AtCoder】Beginner Contest 380-F.Exchange Game

题目链接 Problem Statement Takahashi and Aoki will play a game using cards with numbers written on them. Initially, Takahashi has N N N cards with numbers A 1 , … , A N A_1, \ldots, A_N A1​,…,AN​ in his hand, Aoki has M M M cards with numbers B …...

30. 并发编程

一、什么是多任务 如果一个操作系统上同时运行了多个程序,那么称这个操作系统就是 多任务的操作系统,例如:Windows、Mac、Android、IOS、Harmony 等。如果是一个程序,它可以同时执行多个事情,那么就称为 多任务的程序。…...

【包教包会】CocosCreator3.x框架——带翻页特效的场景切换

一、效果演示 二、如何获取 1、https://gitee.com/szrpf/TurnPage 2、解压,导入cocos creator(版本3.8.2),可以直接运行Demo演示 三、算法思路 1、单场景 页面预制体 通过loadScene来切换页面,无法实现页面特效。…...

k8s上面的Redis集群链接不上master的解决办法

问题描述 之前在k8s上面部署了一台node,然后创建了6个redis的pod,构建了一个redis的集群,正常运行。 最近添加了一台slave node,然后把其中的几个redis的pod调度到了slave node上面,结果集群就起不来了,…...

<项目代码>YOLOv8 瞳孔识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的…...

网络编程-002-UDP通信

1.UDP通信的简单介绍 1.1不需要通信握手,无需维持连接,网络带宽需求较小,而实时性要求高 1.2 包大小有限制,不发大于路径MTU的数据包 1.3容易丢包 1.4 可以实现一对多,多对多 2.客户端与服务端=发送端与接收端 代码框架 收数据方一般都是客户端/接收端 3.头文件 #i…...

MySQL更换瀚高语法更换

MySQL更换瀚高语法更换 一、前言二、语句 一、前言 水一篇,mysql更换瀚高之后,一些需要更换的语法介绍 > 二、语句 MySQL瀚高MySQL用法瀚高用法说明ifnull(x,y)coalesce(x,y)相同相同用于检查两个表达式并返回第一个非空表达式。如果第一个表达式不是 NULL&…...

Object.prototype.hasOwnProperty.call(item, key) 作用与用途

在 JavaScript 中,Object.prototype.hasOwnProperty.call(item, key) 是一种检查对象 item 是否具有特定属性 key 作为自身的属性(而不是继承自原型链)的方法。这种调用方式是安全的,特别是在处理可能被修改过原型链的对象时。 解…...

DNS的10种资源记录

前言 在DNS(域名系统)中,常见的资源记录(Resource Records, RR)用于存储域名与IP地址、邮件服务器等网络资源之间的映射关系。以下是几种常见的DNS资源记录: 1. A记录(Address Record&#xf…...

【数据分享】1981-2024年我国逐日最低气温栅格数据(免费获取)

气象数据一直是一个价值很高的数据,它被广泛用于各个领域的研究当中。之前我们分享过来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI)发布的1929-2024年全球站点的逐日最低气温数据(可查看之前的文章获悉详情&…...

Kafka进阶_1.生产消息

文章目录 一、Controller选举二、生产消息2.1、创建待发送数据2.2、创建生产者对象,发送数据2.3、发送回调2.3.1、异步发送2.3.2、同步发送 2.4、拦截器2.5、序列化器2.6、分区器2.7、消息可靠性2.7.1、acks 02.7.2、acks 1(默认)2.7.3、acks -1或all 2.8、部分重…...

百度世界2024:智能体引领AI应用新纪元

在近日盛大举行的百度世界2024大会上,百度创始人李彦宏以一场题为“文心一言”的精彩演讲,再次将全球科技界的目光聚焦于人工智能(AI)的无限可能。作为一名科技自媒体,我深感这场演讲不仅是对百度AI技术实力的一次全面…...

NIST 发布后量子密码学转型战略草案

美国国家标准与技术研究所 (NIST) 发布了其初步战略草案,即内部报告 (IR) 8547,标题为“向后量子密码标准过渡”。 该草案概述了 NIST 从当前易受量子计算攻击的加密算法迁移到抗量子替代算法的战略。该草案于 2024 年 11 月 12 日发布,开放…...

同向双指针

长度最小的子数组 力扣209 #define MIN(a, b) ((b) < (a) ? (b) : (a)) int minSubArrayLen(int target, int* nums, int numsSize) {int ans numsSize 1;int left 0;int right 0;int sum 0;for (right 0; right < numsSize; right){sum nums[right];while (su…...

小鹏汽车大数据面试题及参考答案

抽象类与接口的区别是什么? 抽象类是一种不能被实例化的类,它可以包含抽象方法和非抽象方法。抽象方法是没有具体实现的方法,必须在子类中被实现。抽象类主要用于为一组相关的类提供一个通用的模板,子类可以继承抽象类并实现其中的抽象方法,也可以使用抽象类中的非抽象方法…...

华为再掀技术革新!超薄膜天线设计路由器首发!

随着Wi-Fi技术的不断进步&#xff0c;新一代的Wi-Fi 7路由器凭借其高速率、低延迟、更稳定的性能受到了广泛关注。它能够更好地满足现代家庭对网络性能的高要求&#xff0c;带来更加流畅、高效的网络体验。9月24日&#xff0c;华为在其秋季全场景新品发布会上推出了全新Wi-Fi 7…...

CREO TOOLKIT二次开发学习之字符转换

在tk中&#xff0c;有很多都是可以直接强制转换的&#xff0c;本文章只列举字符相关的转换。 不建议使用tk官方手册的函数进行转换&#xff0c;因此下文均以原生c进行举例。 //double转wstring wstring a; double b; ato_wstring(b);//wstring转double wstring wstr L"…...

vmware虚拟机安装Windows11提示电脑不符合要求?

vmware虚拟机安装Win11提示电脑不符合要求&#xff1f; 安装问题能进入选择语言界面&#xff0c;请看这不能进入选择语言界面&#xff0c;请看这 安装问题 Vmware虚拟机安装Windows11时提示电脑不符合要求&#xff0c;如下&#xff1a; 修改了虚拟机的硬件配置还是不行&#x…...

【金融风控项目-08】:特征构造

文章目录 1.数据准备1.1 风控建模特征数据1.2 人行征信数据1.3 据之间的内在逻辑 2 样本设计和特征框架2.1 定义观察期样本2.2 数据EDA(Explore Data Analysis)2.3 梳理特征框架 3 特征构造3.1 静态信息和时间截面特征3.2 未来信息问题3.2.1 未来信息案例3.2.2 时间序列特征的未…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...