引力搜索算法
引力搜索算法过程,包括了初始化、适应度评估、质量计算、加速度计算、更新速度和位置的一些步骤。
import numpy as np
import random as rd
from math import exp, sqrt
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation# 定义目标函数
def objFunction(x1, x2):return x1 ** 2 + x2 ** 2# 初始化种群的位置和速度
def init(n):position, velocity = [], []for i in range(n):X1 = rd.uniform(-10, 10)X2 = rd.uniform(-10, 10)V1 = rd.uniform(-3, 3)V2 = rd.uniform(-3, 3)position.append([X1, X2])velocity.append([V1, V2])return position, velocity# 计算适应度值
def fitnessEva(position):fitness = []for i in range(len(position)):fitness.append(objFunction(position[i][0], position[i][1]))return fitness# 找到最佳和最差的适应度值
def findBestAndWorst(position):return min(fitnessEva(position)), max(fitnessEva(position))# 计算每个个体的质量
def calculateMass(fitness):mass = []Mass = []for i in range(len(fitness)):mass.append((fitness[i] - max(fitness)) / (min(fitness) - max(fitness)))for i in range(len(mass)):Mass.append(mass[i] / sum(mass))return Mass# 计算每个个体的加速度
def calculateAcceleration(position, Mass, G, topK):acceleration = []Fi0, Fi1 = 0, 0for i in range(len(position)):for j in range(len(position)):if i != j and j in topK:Fi0 += rd.random() * G * ((Mass[i] * Mass[j]) / (calculateDistance(position[i], position[j]) + r)) * (position[j][0] - position[i][0])Fi1 += rd.random() * G * ((Mass[i] * Mass[j]) / (calculateDistance(position[i], position[j]) + r)) * (position[j][1] - position[i][1])if Mass[i] != 0:acceleration.append([Fi0 / Mass[i] / 10, Fi1 / Mass[i] / 10]) # 这里除10是为了避免粒子的加速度过大else:acceleration.append([10, 10])Fi0 = 0Fi1 = 0return acceleration# 找出适应度更优的前K个粒子
def findTopK(fitness, K):topK = []dic = {}for i in range(len(fitness)):dic[i] = fitness[i]fitness.sort()for i in range(K):topK.append(list(dic.keys())[list(dic.values()).index(fitness[i])])return topK# 更新速度和位置
def updateVelocityAndPosition(acceleration, position, velocity):for i in range(len(velocity)):velocity[i][0] = rd.random() * velocity[i][0] + acceleration[i][0]velocity[i][1] = rd.random() * velocity[i][1] + acceleration[i][1]position[i][0] = position[i][0] + velocity[i][0]position[i][1] = position[i][1] + velocity[i][1]# 计算两个点之间的距离
def calculateDistance(p1, p2):return sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)# 检查位置是否在可行域内
def checkPosition(position):for i in range(len(position)):if position[i][0] < -10:position[i][0] = -10elif position[i][0] > 10:position[i][0] = 10if position[i][1] < -10:position[i][1] = -10elif position[i][1] > 10:position[i][1] = 10if __name__ == '__main__':G = 100r = 1K = 50iterx, maxIterx = 0, 50position, velocity = init(50)fig = plt.figure(figsize=(10, 8))ax = fig.add_subplot(111, projection='3d')scatter = ax.scatter([], [], [], c='pink', marker='o')path_lines = [ax.plot([], [], [], color='lightyellow')[0] for _ in range(50)]ax.set_xlim(-10, 10)ax.set_ylim(-10, 10)ax.set_zlim(0, 200)ax.set_title('Gravitational Search Algorithm Visualization')ax.set_xlabel('X1')ax.set_ylabel('X2')ax.set_zlabel('Fitness')def animate(iteration, position, velocity, G, K, path_history):fitness = fitnessEva(position) # 适应性评估G = G * exp(-20 * iteration / maxIterx) # 更新引力常量Mass = calculateMass(fitness) # 更新粒子质量topK = findTopK(fitness, K) # 找出适应度更优的前K个粒子acceleration = calculateAcceleration(position, Mass, G, topK) # 计算粒子加速度updateVelocityAndPosition(acceleration, position, velocity) # 根据加速度更新速度与位置checkPosition(position) # 检查粒子是否冲出了解空间K = K - iteration # 更新K值# Update scatter plotscatter._offsets3d = ([pos[0] for pos in position],[pos[1] for pos in position],fitness)# Update path historyfor i in range(len(position)):path_history[i].append(position[i] + [fitness[i]])path_lines[i].set_data(np.array(path_history[i]).T[:2])path_lines[i].set_3d_properties(np.array(path_history[i]).T[2])best_fitness = min(fitnessEva(position))best_position = position[fitnessEva(position).index(best_fitness)]ax.set_title(f'Iteration {iteration}: Best Fitness = {best_fitness:.4f}')return scatter,path_history = [[] for _ in range(50)]ani = FuncAnimation(fig, lambda frame: animate(frame, position, velocity, G, K, path_history), frames=maxIterx,interval=200, blit=True, repeat=False)plt.show()best_fitness = min(fitnessEva(position))best_position = position[fitnessEva(position).index(best_fitness)]print("最优解:", best_fitness)print("最优解对应的位置:", best_position)
相关文章:

引力搜索算法
引力搜索算法过程,包括了初始化、适应度评估、质量计算、加速度计算、更新速度和位置的一些步骤。 import numpy as np import random as rd from math import exp, sqrt import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotli…...

【时间之外】IT人求职和创业应知【35】-RTE三进宫
目录 新闻一:京东工业发布11.11战报,多项倍增数据体现工业经济信心提升 新闻二:阿里云100万核算力支撑天猫双11,弹性计算规模刷新纪录 新闻三:声网CEO赵斌:RTE将成为生成式AI时代AI Infra的关键部分 认知…...
Linux的目录结构
/ ├── bin # Binary - 存放用户可以直接使用的基本二进制可执行文件 ├── sbin # System Binaries - 存放系统管理员专用的二进制可执行文件 ├── usr # Unix System Resources - 存放用户使用的软件和库文件 │ ├── bin # Binary - 用户级应用程序…...

python: generator IDAL and DAL using sql server 2019
其它数据库也是一样的思维方式 create IDAL # encoding: utf-8 # 版权所有 2024 ©涂聚文有限公司 # 许可信息查看:言語成了邀功盡責的功臣,還需要行爲每日來值班嗎 # 描述: # Author : geovindu,Geovin Du 涂聚文. # IDE : P…...

命令执行简单
前言:小迪安全2022第一节反弹shell,小迪用的是两台都是云服务器,没有服务器可以在自己的主机上搭建也是可以的,主机上搭两个网站 思路:生成一个木马文件,下载到本机,然后利用本机上传到目标主机…...
【一句话经验】亚马逊云EC2 ubuntu24.04.1开启ROOT登录Permission denied (publickey)
按照常规的方法SSH登录会一直报错: Permission denied (publickey) 因为亚马逊云的默认配置不是在/etc/ssh/sshd_config,而是在引入的文件里了,所以在instance控制台输入这行命令来解除登录限制: sudo sed -i s/^PasswordAuthe…...

百度智能云千帆大模型平台引领企业创新增长
本文整理自百度世界大会 2024——「智能跃迁 产业加速」论坛的同名演讲。 更多大会演讲内容,请访问: https://baiduworld.baidu.com 首先,跟大家分享一张图,这个是我们目前大模型应用落地的场景分布。可以看到,大模型…...

【Linux】深入理解GCC/G++编译流程及库文件管理
目录 1.背景知识 2.gcc/g如何完成编译 (1) 预处理(进行宏替换) (2) 编译(生成汇编) (3) 汇编(生成机器可识别代码) (4) 链接(生成可执行文件或库文件) (5) 总结 (6) 函数库 …...
【Unity基础】对比Unity中两种粒子系统
在Unity中,Particle System和Visual Effect Graph (VFX) 都是用于创建粒子效果的工具,但它们的设计目标、使用场景和功能特点有所不同。以下是详细对比: 1. Particle System 特点 传统粒子系统,Unity自带的模块化粒子特效工具。…...
琐碎笔记——pytest实现前置、后置、参数化、跳过用例执行以及重试
pytest的fixture中文介绍可参考(不过文档稍微有点老): https://www.osgeo.cn/pytest/fixture.html#what-fixtures-are pytest各个作用域的fixture scope “function” 可作用于每个用例 fixture使用的声明放在类定义前面,类中的…...
C# 深层副本与浅层副本 深拷贝与浅拷贝
C# 深层副本与浅层副本 数据复制是编程中的重要任务。 对象是 OOP 中的复合数据类型。 对象中的成员字段可以按值或按引用存储。 可以以两种方式执行复制。 浅表副本将所有值和引用复制到新实例中。 引用所指向的数据不会被复制; 仅指针被复制。 新的引用指向原始…...
CH06_Lambda表达式
第6章:Lambda表达式 本章目标 为什么要学习C#编程语言 了解C#相关常识 C#开发工具Visual Studio安装 掌握C#程序的开发步骤 掌握C#的注释 掌握C#的常用转义符 本章内容 lambda表达式演变史 C# 匿名函数的演变历史可以追溯到 C# 语言的不同版本,…...

大模型本地部署实践:Ollama+Open-WebUI(MacOS)
目录 什么是Ollama Ollama安装 对话界面可视化?Open-WebUI! 安装Open-WebUI 什么是Ollama Ollama是一个为简化大语言模型本地部署与交互的开源框架。它提供了用户友好的接口,帮助开发者和模型爱好者在没有依赖外部API的基础上高效地运行、…...

JavaScript——DOM编程、JS的对象和JSON
一、DOM编程 DOM(Document Object Model)编程:就是使用document对象的API,完成对网页HTML文档进行动态修改,以实现网页数据,和样式动态变化效果的编程。 (一)DOM获取元素的多种方法 1.查找元素的函数 getElementById("id值…...

SIMCom芯讯通A7680C在线升级:FTP升级成功;http升级腾讯云对象储存的文件失败;http升级私有服务器的文件成功
从事嵌入式单片机的工作算是符合我个人兴趣爱好的,当面对一个新的芯片我即想把芯片尽快搞懂完成项目赚钱,也想着能够把自己遇到的坑和注意事项记录下来,即方便自己后面查阅也可以分享给大家,这是一种冲动,但是这个或许并不是原厂希望的,尽管这样有可能会牺牲一些时间也有哪天原…...
OSRM docker环境启动
命令一把梭 wget https://download.geofabrik.de/asia/china-latest.osm.pbf docker pull osrm/osrm-backend docker run -t -v "${PWD}:/data" osrm/osrm-backend osrm-extract -p /opt/car.lua /data/china-latest.osm.pbf docker run -t -v "${PWD}:/data&q…...
Vue3 动态获取 assets 文件夹图片
我真服了Vue3 这个老六了,一个简单图片src 赋值搞得那么复杂. //item.type 是我遍历类型的类型参数 <img alt"吐槽大会" :src"getAssetUrl(item.type)" /> 基于 Vue2 的Webpack 处理,还不错,可以用/ 这种绝对路径,可以接受,虽然多了个require很不爽…...

<项目代码>YOLOv8 草莓成熟识别<目标检测>
YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的…...
代码随想录算法训练营第五十一天|Day51 图论
岛屿数量 深搜 https://www.programmercarl.com/kamacoder/0099.%E5%B2%9B%E5%B1%BF%E7%9A%84%E6%95%B0%E9%87%8F%E6%B7%B1%E6%90%9C.html 思路 #include <stdio.h> #define MAX_SIZE 50 int grid[MAX_SIZE][MAX_SIZE]; int visited[MAX_SIZE][MAX_SIZE]; int N, M; …...

uniapp 自定义加载组件,全屏加载,局部加载 (微信小程序)
效果图 全屏加载 页面加载使用 局部加载 列表加载里面使用 使用gif html <template><view><view class"" v-if"typeFullScreen"><view class"loading" v-if"show"><view class""><i…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...