深入解析:如何使用 PyTorch 的 SummaryWriter 进行深度学习训练数据的详细记录与可视化
深入解析:如何使用 PyTorch 的 SummaryWriter 进行深度学习训练数据的详细记录与可视化
为了更全面和详细地解释如何使用 PyTorch 的 SummaryWriter 进行模型训练数据的记录和可视化,我们可以从以下几个方面深入探讨:
初始化 SummaryWriter
SummaryWriter 是 TensorBoard 在 PyTorch 中的接口,它能够将训练过程中的数据转化为 TensorBoard 支持的格式进行可视化。首先,需要创建 SummaryWriter 的实例,指定日志文件的存储路径:
from torch.utils.tensorboard import SummaryWriter# 日志文件将被存储在当前目录下的 logs 子目录中
writer = SummaryWriter("logs")
记录类型和方法
SummaryWriter 支持记录多种数据类型,每种类型都有对应的方法用于数据的添加和更新:
标量数据(Scalars)
用于记录诸如损失值、精确度、学习率等随训练过程变化的数值:
# 每个训练步骤中记录损失值
loss = compute_loss()
writer.add_scalar('Training Loss', loss, global_step)
图像数据(Images)
用于监控模型输入的图像、特征图或输出结果等:
# 记录输入图像数据
images = next(iter(dataloader))
grid = torchvision.utils.make_grid(images)
writer.add_image('Input Images', grid, global_step)
直方图(Histograms)
直方图用于分析模型内部参数(如权重和偏置)的分布:
# 记录模型的权重分布
for tag, value in model.named_parameters():tag = tag.replace('.', '/')writer.add_histogram('Weights/' + tag, value.data.cpu().numpy(), global_step)writer.add_histogram('Gradients/' + tag, value.grad.data.cpu().numpy(), global_step)
图结构(Graphs)
图结构显示了模型的结构,有助于理解模型的组成:
# 记录模型结构
inputs = torch.randn(1, 3, 224, 224)
writer.add_graph(model, inputs)
高级用法(如PR曲线)
用于记录性能指标,例如精确率和召回率:
# 记录PR曲线
writer.add_pr_curve('pr_curve', labels, predictions, global_step)
使用 TensorBoard 可视化
一旦记录了足够的数据,就可以通过 TensorBoard 来进行查看和分析:
# 在命令行中启动 TensorBoard
tensorboard --logdir=logs
关闭 SummaryWriter
为确保所有数据都被正确写入并释放资源,训练结束后应关闭 SummaryWriter:
writer.close()
总结
SummaryWriter 提供了一个高效、灵活的方式来记录和可视化训练过程中的各种数据。通过可视化这些数据,开发者可以更好地理解模型的行为,监控训练过程,及时调整训练策略,从而提高模型的性能和训练的效率。正确和充分地利用这一工具,将极大地助力深度学习模型的开发和优化过程。
相关文章:
深入解析:如何使用 PyTorch 的 SummaryWriter 进行深度学习训练数据的详细记录与可视化
深入解析:如何使用 PyTorch 的 SummaryWriter 进行深度学习训练数据的详细记录与可视化 为了更全面和详细地解释如何使用 PyTorch 的 SummaryWriter 进行模型训练数据的记录和可视化,我们可以从以下几个方面深入探讨: 初始化 SummaryWriter…...
企业微信中设置回调接口url以及验证 spring boot项目实现
官方文档: 接收消息与事件: 加密解密文档:加解密库下载与返回码 - 文档 - 企业微信开发者中心 下载java样例 加解密库下载与返回码 - 文档 - 企业微信开发者中心 将解压开的代码 ‘将文件夹:qq\weixin\mp\aes的代码作为工具拷…...
电脑超频是什么意思?超频的好处和坏处
嗨,亲爱的小伙伴!你是否曾经听说过电脑超频?在电脑爱好者的圈子里,这个词似乎非常熟悉,但对很多普通用户来说,它可能还是一个神秘而陌生的存在。 今天,我将带你揭开超频的神秘面纱,…...
在 AMD GPU 上构建深度学习推荐模型
Deep Learning Recommendation Models on AMD GPUs — ROCm Blogs 2024 年 6 月 28 日 发布者 Phillip Dang 在这篇博客中,我们将演示如何在支持 ROCm 的 AMD GPU 上使用 PyTorch 构建一个简单的深度学习推荐模型 (DLRM)。 简介 DLRM 位于推荐系统和深度学习的交汇…...
阿里云IIS虚拟主机部署ssl证书
宝塔配置SSL证书用起来是很方便的,只需要在站点里就可以配置好,但是云虚拟主机在管理的时候是没有这个权限的,只提供了简单的域名管理等信息。 此处记录下阿里云(原万网)的IIS虚拟主机如何配置部署SSL证书。 进入虚拟…...
Python运算符列表
运算符 描述 xy,x—y 加、减,“"号可重载为连接符 x*y,x**y,x/y,x%y 相乘、求平方、相除、求余,“*”号可重载为重复,“%"号可重载为格式化 <,<,&…...
MFC图形函数学习09——画多边形函数
这里所说的多边形是指在同一平面中由多条边构成的封闭图形,强调封闭二字,否则无法进行颜色填充,多边形包括凸多边形和凹多边形。 一、绘制多边形函数 原型:BOOL Polygon(LPPOINT lpPoints,int nCount); 参数&#x…...
GaussianDreamer: Fast Generation from Text to 3D Gaussians——点云论文阅读(11)
此内容是论文总结,重点看思路!! 文章概述 本文提出了一种快速从文本生成3D资产的新方法,通过结合3D高斯点表示、3D扩散模型和2D扩散模型的优势,实现了高效生成。该方法利用3D扩散模型生成初始几何,通过噪声…...
k8s篇之控制器类型以及各自的适用场景
1. k8s中控制器介绍 在 Kubernetes 中,控制器(Controller)是集群中用于管理资源的关键组件。 它们的核心作用是确保集群中的资源状态符合用户的期望,并在需要时自动进行调整。 Kubernetes 提供了多种不同类型的控制器,每种控制器都有其独特的功能和应用场景。 2. 常见的…...
Node.js 笔记(一):express路由
代码 建立app.js文件,代码如下: const express require(express) const app express() const port 3002app.get(/,(req,res)>{res.send(hello world!)})app.listen(port,()>{console.log(sever is running on http://localhost:${port}) })问…...
bash笔记
0 $0 是脚本的名称,$# 是传入的参数数量,$1 是第一个参数,$BOOK_ID 是变量BOOK_ID的内容 1 -echo用于在命令窗口输出信息 -$():是命令替换的语法。$(...) 会执行括号内的命令,并将其输出捕获为一个字符串ÿ…...
mongoDB副本集搭建-docker
MongoDB副本集搭建-docker 注:在进行副本集搭建前,请先将服务部署docker环境并正常运行。 #通过--platform指定下载镜像的系统架构 在这我用的是mongo:4.0.28版本 arm64系统架构的mongo镜像 docker pull --platformlinux/arm64 mongo:4.0.2#查看镜像是…...
Python软体中使用 Flask 或 FastAPI 搭建简单 RESTful API 服务并实现限流功能
Python软体中使用 Flask 或 FastAPI 搭建简单 RESTful API 服务并实现限流功能 引言 在现代 web 开发中,RESTful API 已成为应用程序之间进行通信的标准方式。Python 提供了多种框架来帮助开发者快速搭建 RESTful API 服务,其中 Flask 和 FastAPI 是最受欢迎的两个框架。本…...
CentOS操作系统下安装Nacos
CentOS下安装Nacos 前言 这在Centos下安装配置Nacos 下载Linux版Nacos 首先到Nacos的 Github页面,找到所需要安装的版本 也可以右键复制到链接,然后通过wget命令进行下载 wget https://github.com/alibaba/nacos/releases/download/1.3.2/nacos-ser…...
C++设计模式之适配器模式与桥接模式,装饰器模式及代理模式相似点与不同点
适配器模式、桥接模式、装饰器模式和代理模式在形式上有一些相似之处,因为它们都涉及到对类的功能或接口的修改、增强或转换。然而,它们在动机和目的上有着显著的不同。以下是对这些模式相似点和不同点的清晰说明: 相似点: 结构…...
ThreadLocal 和 Caffeine 缓存是两种不同的缓存机制,它们在用途和实现上有明显的区别
ThreadLocal 和 Caffeine 缓存是两种不同的缓存机制,它们在用途和实现上有明显的区别: ThreadLocal 缓存: ThreadLocal 提供了线程局部变量的功能,每个线程可以访问自己的局部变量,而不会与其他线程冲突。ThreadLocal …...
Django实现智能问答助手-进一步完善
扩展 增加问答数据库,通过 Django Admin 添加问题和答案。实现更复杂的问答逻辑,比如使用自然语言处理(NLP)库。使用前端框架(如 Bootstrap)增强用户界面 1.注册模型到 Django Admin(admin.py…...
【Linux】开发工具make/Makefile、进度条小程序
Linux 1.make/Makefile1.什么是make和Makefile?2.stat命令3.Makefile单个文件的写法4.Makefile多个文件的写法 2.进度条1.回车\r、换行\n2.缓冲区3.进度条1.倒计时程序2.进度条程序 1.make/Makefile 1.什么是make和Makefile? 一个工程中的源文件不计其…...
深度学习三大框架对比与实战:PyTorch、TensorFlow 和 Keras 全面解析
深度学习框架的对比与实践 引言 在当今深度学习领域,PyTorch、TensorFlow 和 Keras 是三大主流框架。它们各具特色,分别满足从研究到工业部署的多种需求。本文将通过清晰的对比和代码实例,帮助你了解这些框架的核心特点以及实际应用。 1. 深…...
Leetcode206.反转链表(HOT100)
链接: 我的代码: class Solution { public:ListNode* reverseList(ListNode* head) {ListNode* p head;ListNode*res new ListNode(-1);while(p){ListNode*k res->next;res->next p;p p->next;res->next->next k;}return res->…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...
