当前位置: 首页 > news >正文

LLaMA与ChatGLM选用比较

目录

1. 开发背景

2. 目标与应用

3. 训练数据

4. 模型架构与规模

5. 开源与社区支持

6. 对话能力

7. 微调与应用

8. 推理速度与资源消耗

总结


LLaMA(Large Language Model Meta AI)和 ChatGLM(Chat Generative Language Model)都是强大的大型语言模型,但它们有一些关键的区别,主要体现在以下几个方面:

1. 开发背景

  • LLaMA:由 Meta(Facebook)发布,LLaMA 是一个开源的大型语言模型,旨在提供与 GPT-3 等模型相当的性能,并且支持多种规模(例如 7B, 13B, 30B, 65B 参数版本)。LLaMA 的重点在于提供高效、精简的模型架构,便于研究人员在不同资源限制下进行训练和应用。
  • ChatGLM:由 清华大学 KEG 实验室开发,是一个中文的对话生成语言模型。ChatGLM 在大规模中文语料库上进行了预训练,并且在生成对话和中文自然语言处理(NLP)任务上表现较为优秀。其目标是针对中文和多语言的任务优化,并提供类似 GPT 系列的对

相关文章:

LLaMA与ChatGLM选用比较

目录 1. 开发背景 2. 目标与应用 3. 训练数据 4. 模型架构与规模 5. 开源与社区支持 6. 对话能力 7. 微调与应用 8. 推理速度与资源消耗 总结 LLaMA(Large Language Model Meta AI)和 ChatGLM(Chat Generative Language Model)都是强大的大型语言模型,但它们有一…...

GPTZero:高效识别AI生成文本,保障学术诚信与内容原创性

产品描述 GPTZero 是一款先进的AI文本检测工具,专为识别由大型语言模型(如ChatGPT、GPT-4、Bard等)生成的文本而设计。它通过分析文本的复杂性和一致性,判断文本是否可能由人类编写。GPTZero 已经得到了超过100家媒体机构的报道&…...

C/C++ 优化,strlen 示例

目录 C/C optimization, the strlen examplehttps://hallowed-blinker-3ca.notion.site/C-C-optimization-the-strlen-example-108719425da080338d94c79add2bb372 揭开优化的神秘面纱... 让我们来谈谈 CPU 等等,SIMD 是什么? 为什么 strlen 是一个很…...

【动手学深度学习Pytorch】1. 线性回归代码

零实现 导入所需要的包: # %matplotlib inline import random import torch from d2l import torch as d2l import matplotlib.pyplot as plt import matplotlib import os构造人造数据集:假设w[2, -3.4],b4.2,存在随机噪音&…...

深入理解PyTorch中的卷积层:工作原理、参数解析与实际应用示例

深入理解PyTorch中的卷积层:工作原理、参数解析与实际应用示例 在PyTorch中,卷积层是构建卷积神经网络(CNNs)的基本单元,广泛用于处理图像和视频中的特征提取任务。通过卷积操作,网络可以有效地学习输入数…...

DataGear 5.2.0 发布,数据可视化分析平台

DataGear 企业版 1.3.0 已发布,欢迎体验! http://datagear.tech/pro/ DataGear 5.2.0 发布,图表插件支持定义依赖库、严重 BUG 修复、功能改进、安全增强,具体更新内容如下: 重构:各模块管理功能访问路径…...

uniapp: vite配置rollup-plugin-visualizer进行小程序依赖可视化分析减少vender.js大小

一、前言 在之前文章《uniapp: 微信小程序包体积超过2M的优化方法(主包从2.7M优化到1.5M以内)》中,提到了6种优化小程序包体积的方法,但并没有涉及如何分析common/vender.js这个文件的优化,而这个文件的大小通常情况下…...

深度学习:如何复现神经网络

深度学习:如何复现神经网络 要复现图中展示的卷积神经网络(CNN),我们需详细了解和配置每层网络的功能与设计理由。以下将具体解释各层的配置以及设计选择的原因,确保网络设计的合理性与有效性。 详细的网络层配置与设…...

Spring Boot与MyBatis-Plus的高效集成

Spring Boot与MyBatis-Plus的高效集成 引言 在现代 Java 开发中,MyBatis-Plus 作为 MyBatis 的增强工具,以其简化 CRUD 操作和无需编写 XML 映射文件的特点,受到了开发者的青睐。本篇文章将带你一步步整合 Spring Boot 与 MyBatis-Plus&…...

【Unity ShaderGraph实现流体效果之Function入门】

Unity ShaderGraph实现流体效果之Node入门(一) 前言Shader Graph NodePosition NodeSplit NodeSubtract NodeBranch Node 总结 前言 Unity 提供的Shader Graph在很大程度上简化了开发者对于编写Shader的工作,只需要拖拽即可完成一个视觉效果…...

Spark RDD sortBy算子执行时进行数据 “采样”是什么意思?

一、sortBy 和 RangePartitioner sortBy 在 Spark 中会在执行排序时采用 rangePartitioner 进行分区,这会影响数据的分区方式,并且这一步骤是通过对数据进行 “采样” 来计算分区的范围。不过,重要的是,sortBy 本身仍然是一个 tr…...

React-useRef与DOM操作

#题引:我认为跟着官方文档学习不会走歪路 ref使用 组件重新渲染时,react组件函数里的代码会重新执行,返回新的JSX,当你希望组件“记住”某些信息,但又不想让这些信息触发新的渲染时,你可以使用ref&#x…...

Mistral AI 发布 Pixtral Large 模型:多模态时代的开源先锋

Mistral AI 最新推出的 Pixtral Large 模型,带来了更强的多模态能力。作为一款开源的多模态模型,它不仅在参数量上达到 1240 亿,更在文本和图像理解上实现了质的飞跃。 模型亮点 1. 多模态能力再升级 Pixtral Large 配备了 123B 参数的解码器…...

Windows、Linux多系统共享蓝牙设备

Windows、Linux多系统共享蓝牙设备 近来遇到一个新问题,就是双系统共享蓝牙鼠标。因为一直喜欢在Windows、Linux双系统之间来回切换,而每次切换系统蓝牙就必须重新配对,当然,通过网络成功解决了问题。 通过这个问题,稍…...

C语言 | Leetcode C语言题解之第564题寻找最近的回文数

题目&#xff1a; 题解&#xff1a; #define MAX_STR_LEN 32 typedef unsigned long long ULL;void reverseStr(char * str) {int n strlen(str);for (int l 0, r n-1; l < r; l, r--) {char c str[l];str[l] str[r];str[r] c;} }ULL * getCandidates(const char * n…...

wsl虚拟机中的dockers容器访问不了物理主机

1 首先保证wsl虚拟机能够访问宿主机IP地址&#xff0c;wsl虚拟机通过vEthernet (WSL)的地址访问&#xff0c;着意味着容器也要通过此IP地址访问物理主机。 2 遇到的问题&#xff1a;wsl虚拟机中安装了docker&#xff0c;用在用到docker容器内的开发环境&#xff0c;但是虚拟机…...

Spark RDD 的宽依赖和窄依赖

通俗地理解 Spark RDD 的 宽依赖 和 窄依赖&#xff0c;可以通过以下比喻和解释&#xff1a; 1. 日常生活比喻 假设你在管理多个团队完成工作任务&#xff1a; 窄依赖&#xff1a;每个团队只需要关注自己的分工&#xff0c;完成自己的任务。例如&#xff0c;一个人将纸张折好&…...

二进制转十进制

解题思路分析 二进制转十进制原理&#xff1a;二进制数转换为十进制数的基本原理是按位权展开相加。对于一个二进制数&#xff0c;从右往左每一位的位权依次是将每一位上的数字&#xff08;0 或 1&#xff09;乘以其对应的位权&#xff0c;然后把所有结果相加&#xff0c;就得…...

深度学习:神经网络中的非线性激活的使用

深度学习&#xff1a;神经网络中的非线性激活的使用 在神经网络中&#xff0c;非线性激活函数是至关重要的组件&#xff0c;它们使网络能够捕捉和模拟输入数据中的复杂非线性关系。这些激活函数的主要任务是帮助网络解决那些无法通过简单的线性操作&#xff08;如权重相乘和偏…...

Python缓存:两个简单的方法

缓存是一种用于提高应用程序性能的技术&#xff0c;它通过临时存储程序获得的结果&#xff0c;以便在以后需要时重用它们。 在本文中&#xff0c;我们将学习Python中的不同缓存技术&#xff0c;包括functools模块中的 lru_cache和 cache装饰器。 简单示例&#xff1a;Python缓…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...