当前位置: 首页 > news >正文

【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.

操作环境:

MATLAB 2022a

1、算法描述

北方苍鹰优化算法(Northern Goshawk Optimization,简称NGO)是一种新兴的智能优化算法,灵感来源于北方苍鹰的捕猎行为。北方苍鹰是一种敏捷且高效的猛禽,广泛分布于北半球,特别是北美和欧亚大陆的森林地带。它们以其出色的猎食策略和高度的适应性闻名,而NGO算法正是通过模拟这种捕猎策略来实现优化目标。

在自然界中,北方苍鹰通过多种手段捕捉猎物,这些手段主要包括高空俯冲、低空巡航和突然袭击。它们在捕猎过程中表现出的敏锐观察、精确定位以及快速反应等特性,为优化算法提供了丰富的灵感源泉。NGO算法通过将这些自然行为转化为数学模型和计算规则,从而实现对复杂优化问题的有效求解。

NGO算法的基本思想是通过模拟北方苍鹰的捕猎行为来寻找问题的最优解。具体来说,该算法将搜索空间中的每一个可能解视为猎物,而算法中的个体(即苍鹰)则通过一系列的捕猎行为来不断逼近和捕获这些猎物,从而找到最优解。为了实现这一目标,NGO算法通常包括以下几个主要步骤:

初始化种群:首先,NGO算法会在搜索空间内随机生成一定数量的初始解,这些解对应于北方苍鹰的初始位置。每个解的位置表示一个潜在的解决方案,并通过适应度函数来评估其优劣。适应度函数的设计应根据具体问题的特性来确定,通常用于衡量解的优劣程度。

个体更新:在每一轮迭代过程中,北方苍鹰会根据捕猎策略调整自身的位置。这个过程可以看作是搜索空间中的一次移动,目的是逐步逼近最优解。具体的更新策略可以分为两类:局部搜索和全局搜索。局部搜索模拟苍鹰在发现猎物后的精确打击过程,而全局搜索则模拟苍鹰在大范围内寻找猎物的过程。

捕猎行为模拟:NGO算法通过一系列数学模型模拟苍鹰的捕猎行为,这些模型通常包括俯冲攻击、突然袭击和包围等策略。在俯冲攻击中,苍鹰从高空快速下降,以极高的速度和精度扑向猎物;在突然袭击中,苍鹰通过快速改变方向和速度,以出其不意的方式捕捉猎物;在包围策略中,多个苍鹰协同合作,从不同方向逼近猎物,最终实现围捕。

适应度评价:每个个体在更新位置后,需要通过适应度函数重新评估其优劣。这一步骤对于指导下一轮的搜索具有关键作用,因为它决定了哪些个体能够进入下一轮迭代,并在搜索空间中继续移动。适应度函数的选择和设计直接影响算法的收敛速度和精度。

更新种群:在每一轮迭代结束后,NGO算法根据适应度值选择最优的个体组成新的种群。这一过程类似于自然界中的“优胜劣汰”,通过保留适应度高的个体,逐步淘汰适应度低的个体,从而保证算法朝着最优解的方向进化。

终止条件:NGO算法的迭代过程会在满足某个终止条件时结束。常见的终止条件包括迭代次数达到预设值、适应度值达到预设阈值、种群适应度值变化小于某个阈值等。满足任意一个条件时,算法停止迭代,并输出当前最优解。

NGO算法具有许多显著的优点,首先,它通过模拟北方苍鹰的自然捕猎行为,使得算法具有很强的鲁棒性和适应性。其次,由于苍鹰的捕猎行为具有多样性和灵活性,NGO算法在处理复杂、多峰、非线性优化问题时表现出色。此外,NGO算法具有较强的全局搜索能力,能够有效避免陷入局部最优,从而提高求解精度。

然而,NGO算法也存在一些挑战和改进空间。首先,算法的性能依赖于适应度函数的设计和种群初始化的质量,如何合理设计适应度函数和优化初始化策略是一个关键问题。其次,尽管NGO算法具有较强的全局搜索能力,但在处理高维、复杂度极高的问题时,仍可能面临收敛速度较慢的问题。为了提高收敛速度,可以结合其他优化算法或引入自适应机制,进一步改进NGO算法的性能。

为了更好地理解NGO算法的工作原理,我们可以通过一个具体的优化问题来说明。假设我们要解决一个函数优化问题,目标是在给定的搜索空间内找到使目标函数值最小的点。首先,我们在搜索空间内随机生成一群初始解,每个解对应一个苍鹰的位置。接下来,根据适应度函数评估每个解的优劣,适应度值较高的解代表离最优解更近。

在每一轮迭代中,每只苍鹰根据捕猎策略调整自己的位置。假设某只苍鹰发现了一个适应度值较高的区域,它会模拟俯冲攻击,迅速逼近该区域;而其他苍鹰则可能进行全局搜索,寻找更好的解。通过不断地局部搜索和全局搜索,整个种群逐步逼近最优解。在达到终止条件后,算法输出当前最优解,即为问题的最佳解决方案。

综上所述,北方苍鹰优化算法是一种基于自然界捕猎行为的智能优化算法,通过模拟北方苍鹰的捕猎策略,实现对复杂优化问题的有效求解。该算法具有鲁棒性强、适应性好、全局搜索能力强等优点,但也存在一些需要进一步研究和改进的挑战。随着算法的不断发展和完善,NGO算法在实际应用中展现出广阔的前景。无论是在工程优化、经济调度、还是科学研究等领域,NGO算法都具有重要的应用价值和潜力。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

点击下方原文链接获取

【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线._matlan ngo函数-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/Koukesuki/article/details/139360735?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522aeafdd9f8d96d1e290410fe6dff5d405%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=aeafdd9f8d96d1e290410fe6dff5d405&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-139360735-null-null.nonecase&utm_term=218&spm=1018.2226.3001.4450

相关文章:

【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.

操作环境: MATLAB 2022a 1、算法描述 北方苍鹰优化算法(Northern Goshawk Optimization,简称NGO)是一种新兴的智能优化算法,灵感来源于北方苍鹰的捕猎行为。北方苍鹰是一种敏捷且高效的猛禽,广泛分布于北…...

如何控制自己玩手机的时间?两台苹果手机帮助自律

对一些人来说,被智能手机“绑架”是一件心甘情愿的事,和它相处的一天中,不必面对现实的压力,它就像个“舒适区”。这是因为在使用手机的过程中,应用程序(尤其是游戏和社交媒体应用)会不断刺激大…...

【java-Neo4j 5开发入门篇】-最新Java开发Neo4j

系列文章目录 前言 上一篇文章讲解了Neo4j的基本使用,本篇文章对Java操作Neo4j进行入门级别的阐述,方便读者快速上手对Neo4j的开发。 一、开发环境与代码 1.docker 部署Neo4j #这里使用docker部署Neo4j,需要镜像加速的需要自行配置 docker run --name…...

Python的3D可视化库 - vedo (1)简介和模块功能概览

文章目录 1. vedo和它支持的功能简介1.1 安装vedo1.2 命令行接口1.3 导出3D文件1.4 文件格式转换 2. vedo模块功能概览2.1 绘制和渲染visual 管理可视化、对象及其属性的显示的基类plotter 3D渲染colors 定义和显示颜色dolfin FEniCS/Dolfin库的支持 2.2 图形数据管理mesh 多边…...

全面解析:HTML页面的加载全过程(一)--输入URL地址,与服务器建立连接

用户输入URL地址,与服务器建立连接 用户在浏览器地址栏输入一个URL 浏览器开始执行以下三步操作操作:url解析、DNS查询、TCP连接 第一步:URL解析 什么是URL? URL(Uniform Resource Locator,统一资源定位符)是互联网…...

elasticsearch的倒排索引是什么?

大家好,我是锋哥。今天分享关于【elasticsearch的倒排索引是什么?】面试题。希望对大家有帮助; elasticsearch的倒排索引是什么? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 倒排索引(Inverted Index&a…...

Ubuntu VNC Session启动chromium和firefox报错

问题描述 VNC客户端连接到Ubuntu Server后,启动chromium和firefox时报错: $ chromium [348564:348564:1117/102143.085649:ERROR:ozone_platform_x11.cc(244)] Missing X server or $DISPLAY [348564:348564:1117/102143.085732:ERROR:env.cc(258)] Th…...

【Tealscale + Headscale + 自建服务器】异地组网笔记

文章目录 效果为什么要用 Headscale云服务器安装 Headscale配置 config.yaml创建反向代理搭建管理 UI授权管理 UI添加互联设备参考 效果 首先是连接情况,双端都连接上自建的 Headscale, 手机使用移动流量,测试一下 ping 值 再试试进入游戏 可…...

C++ 编程基础(8)模版 | 8.2、函数模版

文章目录 一、函数模版1、声明与定义2、模版参数3、模板的实例化3.1、隐式实例化3.2、显示实例化 4、模版的特化5、注意事项6、总结 前言: C 函数模板是一种强大的特性,它允许程序员编写与类型无关的代码。通过使用模板,函数或类可以处理不同…...

Android Studio音频视频播放器课程设计

这个项目适合刚刚学习Android studio的初学者,实现音视频的基本播放功能,各项功能的页面都做的比较简单,特别适用于初学者,其特点在于本项目抛开了各种花里胡哨的制作,以最接近初学者的样式画面呈现,完全不…...

速盾:CDN是否支持屏蔽IP?

CDN(内容分发网络)是一种用于提高网站性能和可靠性的技术,通过将内容分发到距离终端用户更近的节点,减少了数据传输的延迟并提高了用户体验。在CDN中,屏蔽IP是一项重要的功能,可以帮助网站屏蔽无效或恶意请…...

机器学习—学习曲线

学习曲线是帮助理解学习算法如何工作的一种方法,作为它所拥有的经验的函数。 绘制一个符合二阶模型的学习曲线,多项式或二次函数,画出交叉验证错误Jcv,以及Jtrain训练错误,所以在这个曲线中,横轴将是Mtrai…...

在 macOS 和 Linux 中,波浪号 `~`的区别

文章目录 1、在 macOS 和 Linux 中,波浪号 ~macOS示例 Linux示例 区别总结其他注意事项示例macOSLinux 结论 2、root 用户的主目录通常是 /root解释示例切换用户使用 su 命令使用 sudo 命令 验证当前用户总结 1、在 macOS 和 Linux 中,波浪号 ~ 在 macO…...

【Java】实战:多数元素

一、题目描述 给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 示例 1: 输入:nums [3,2,3] 输出&#x…...

一文解决Latex中的eps报错eps-converted-to.pdf not found: using draft setting.

在使用Vscode配的PDFLatex编译IEEE TII的Latex模板时,出现eps文件不能转换为pdf错误,看了几十篇方法都没用,自己研究了半天终于可以正常运行了。主要原因还是Settings.JSON中的PDFLatex模块缺少:"--shell-escape", 命令…...

计算光纤色散带来的相位移动 matlab

需要注意的地方 1.以下内容纯属个人理解,很有可能不准确,请大家仅做参考 2.光速不要直接用3e8 m/s,需要用精确的2.9979.... 3.光的频率无论在真空还是光纤(介质)都是不变的,是固有属性,但是波长lambdac/f在不同的介…...

国内docker pull拉取镜像的解决方法

访问网站,查找该网站上可用的镜像源,然后替换掉下面代码中的hub-mirror.c.163.com: docker pull hub-mirror.c.163.com/library/nginx:latest 另外,进入到镜像之后,可以使用下面的命令查看操作系统版本。 lsb_releas…...

“Kafka面试攻略:核心问题与高效回答”

1,生产者发送消息的原理 发送消息的过程中,涉及到两个线程,main线程和sender线程,main线程会创建一个双端队列,main线程向双端队列发送消息,sender线程从双端队列里拉取消息,发送给Kafka Broke…...

C++ 多线程std::thread以及条件变量和互斥量的使用

前言 本文章主要介绍C11语法中std::thread的使用,以及条件变量和互斥量的使用。 std::thread介绍 构造函数 std::thread 有4个构造函数 // 默认构造函,构造一个线程对象,在这个线程中不执行任何处理动作 thread() noexcept;// 移动构造函…...

新华三H3CNE网络工程师认证—子接口技术

子接口(subinterface)是通过协议和技术将一个物理接口(interface)虚拟出来的多个逻辑接口。在VLAN虚拟局域网中,通常是一个物理接口对应一个 VLAN。在多个 VLAN 的网络上,无法使用单台路由器的一个物理接口…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 ​ 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...