当前位置: 首页 > news >正文

Intern大模型训练营(九):XTuner 微调实践微调

本节课程的视频和教程都相当清晰,尤其是教程,基本只要跟着文档,在开发机上把指令都相同地输出一遍,就可以完成任务(大赞),相当顺利。因此,这里的笔记就不重复赘述步骤,更多侧重于将教程的知识进行思考和解读

1. 环境配置与数据准备

首先创建conda环境,然后安装XTuner。

同时了解一下关于 微调 的前置知识,建议阅读XTuner微调前置基础,XTuner 文档链接:XTuner-doc-cn。

摘取一部分:

微调(fine-tuning)是一种基于预训练模型,通过少量的调整(fine-tune)来适应新的任务或数据的方法。

微调是在预训练模型的基础上,将模型中一些层的权重参数进行微调,以适应新的数据集或任务。

在大模型的下游应用中,经常会用到两种微调模式:增量预训练 和 指令跟随 。

LoRA(Low-Rank Adaptation)是一种使用低精度权重对大型预训练语言模型进行微调的技术,它的核心思想是在不改变原有模型权重的情况下,通过添加少量新参数来进行微调。这种方法降低了模型的存储需求,也降低了计算成本,实现了对大模型的快速适应,同时保持了模型性能。

QLoRA(Quantized LoRA)微调技术是对LoRA的一种改进,它通过引入高精度权重和可学习的低秩适配器来提高模型的准确性。并且在LoRA的基础上,引入了量化技术。通过将预训练模型量化为int4格式,可以进一步减少微调过程中的计算量,同时也可以减少模型的存储空间,这对于在资源有限的设备上运行模型非常有用。

XTuner 一个大语言模型&多模态模型微调工具箱。 MMRazor  MMDeploy 联合开发。

 2. 修改提供的数据

这里创建一个新的文件夹用于存储微调数据后,要创建一个change_script.py,如下:

import json
import argparse
from tqdm import tqdmdef process_line(line, old_text, new_text):# 解析 JSON 行data = json.loads(line)# 递归函数来处理嵌套的字典和列表def replace_text(obj):if isinstance(obj, dict):return {k: replace_text(v) for k, v in obj.items()}elif isinstance(obj, list):return [replace_text(item) for item in obj]elif isinstance(obj, str):return obj.replace(old_text, new_text)else:return obj# 处理整个 JSON 对象processed_data = replace_text(data)# 将处理后的对象转回 JSON 字符串return json.dumps(processed_data, ensure_ascii=False)def main(input_file, output_file, old_text, new_text):with open(input_file, 'r', encoding='utf-8') as infile, \open(output_file, 'w', encoding='utf-8') as outfile:# 计算总行数用于进度条total_lines = sum(1 for _ in infile)infile.seek(0)  # 重置文件指针到开头# 使用 tqdm 创建进度条for line in tqdm(infile, total=total_lines, desc="Processing"):processed_line = process_line(line.strip(), old_text, new_text)outfile.write(processed_line + '\n')if __name__ == "__main__":parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")parser.add_argument("input_file", help="Input JSONL file to process")parser.add_argument("output_file", help="Output file for processed JSONL")parser.add_argument("--old_text", default="尖米", help="Text to be replaced")parser.add_argument("--new_text", default="机智流", help="Text to replace with")args = parser.parse_args()main(args.input_file, args.output_file, args.old_text, args.new_text)

其中process_line比较容易看出是递归地将line中的old_text替换为new_text,下面几行parser的内容有点陌生:

parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")

这行代码创建了一个 ArgumentParser 对象,它是 argparse 模块的主要类。description 参数提供了一个字符串,这个字符串会在生成的帮助文档中显示,用来描述这个脚本的作用。

parser.add_argument("input_file", help="Input JSONL file to process")
parser.add_argument("output_file", help="Output file for processed JSONL")

这两行代码分别添加了两个位置参数:input_fileoutput_file。这些参数是必需的,因为它们没有指定 --- 前缀,而是直接作为命令行参数提供。help 参数提供了每个参数的简短描述。

parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
parser.add_argument("--new_text", default="机智流", help="Text to replace with")

这两行代码添加了两个可选参数:--old_text--new_text。这些参数有默认值,分别是 "尖米" 和 "机智流"。如果在命令行中没有提供这些参数,它们将使用默认值。help 参数同样提供了每个参数的简短描述。

argparse 模块使得脚本能够接受命令行参数,这些参数可以在运行脚本时由用户提供。这样,用户就可以灵活地指定输入文件、输出文件以及要替换的文本。

当用户运行脚本时,例如:

python change_script.py input.jsonl output.jsonl --old_text "old_string" --new_text "new_string"

argparse 会自动解析这些参数,并在脚本中以 args.input_fileargs.output_fileargs.old_textargs.new_text 的形式提供这些值。这样,脚本就可以根据用户提供的参数执行相应的操作。

3. 训练启动

复制模型中:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/finetune/models/internlm2_5-7b-chat

这句软连接的作用如下:

通过执行ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/finetune/models/internlm2_5-7b-chat命令,你就在/root/finetune/models目录下创建了一个指向/root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat的软连接,使得在任何需要使用该模型的地方,都可以通过/root/finetune/models/internlm2_5-7b-chat来访问,而实际上访问的是/root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat目录中的内容。

 修改config中:

xtuner copy-cfg internlm2_5_chat_7b_qlora_alpaca_e3 ./

这条命令的作用是将名为internlm2_5_chat_7b_qlora_alpaca_e3的配置文件复制到当前目录,xtuner copy-cfg命令是一个方便的工具,它允许用户快速获取和定制微调任务所需的配置文件,从而简化了大模型微调的准备工作。

启动微调中:

xtuner train ./config/internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2 --work-dir ./work_dirs/assistTuner

当我们准备好了所有内容,我们只需要将使用 xtuner train 命令令即可开始训练。

xtuner train 命令用于启动模型微调进程。该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件 internlm2_5_chat_7b_qlora_alpaca_e3_copy.py
训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加 --work-dir 指定特定的文件保存位置。--deepspeed 则为使用 deepspeed, deepspeed 可以节约显存。

DeepSpeed是一个由微软开发的开源深度学习优化库,旨在提高大规模模型训练的效率和速度。

XTuner 也内置了 deepspeed 来加速整体的训练过程,共有三种不同的 deepspeed 类型可进行选择,分别是 deepspeed_zero1deepspeed_zero2 和 deepspeed_zero3

 这里可以阅读XTuner微调高级进阶来补充知识。

权重转换中:

模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 HuggingFace 格式文件,那么我们可以通过以下命令来实现一键转换。

xtuner convert pth_to_hf ./internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

xtuner convert pth_to_hf 命令用于进行模型格式转换。该命令需要三个参数:CONFIG 表示微调的配置文件, PATH_TO_PTH_MODEL 表示微调的模型权重文件路径,即要转换的模型权重, SAVE_PATH_TO_HF_MODEL 表示转换后的 HuggingFace 格式文件的保存路径。

 模型合并中:

对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(Adapter),训练完的这个层最终还是要与原模型进行合并才能被正常的使用。

对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。

 在 XTuner 中提供了一键合并的命令 xtuner convert merge,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。

xtuner convert merge /root/finetune/models/internlm2_5-7b-chat ./hf ./merged --max-shard-size 2GB

xtuner convert merge命令用于合并模型。该命令需要三个参数:LLM 表示原模型路径,ADAPTER 表示 Adapter 层的路径, SAVE_PATH 表示合并后的模型最终的保存路径。

--max-shard-size {GB}代表每个权重文件最大的大小(默认为2GB)
--device {device_name}这里指的就是device的名称,可选择的有cuda、cpu和auto,默认为cuda即使用gpu进行运算
--is-clip这个参数主要用于确定模型是不是CLIP模型,假如是的话就要加上,不是就不需要添加

4. 模型WebUI对话

这里还是前面课程的类似webui实现,课程已经给号了streamlit的脚本,修改路径、端口映射后,就可以看到webui界面:

(这里把“你的名字”部分就直接改成 你的名字了,当时有点犯蠢了。。不过效果是对的) 

相关文章:

Intern大模型训练营(九):XTuner 微调实践微调

本节课程的视频和教程都相当清晰,尤其是教程,基本只要跟着文档,在开发机上把指令都相同地输出一遍,就可以完成任务(大赞),相当顺利。因此,这里的笔记就不重复赘述步骤,更…...

从一次java.io.StreamCorruptedException: invalid stream header: 48656C6C 错误中学到的调试思路

问题场景: 在项目中,我试图使用 Java 的 ObjectInputStream 反序列化一个对象。代码逻辑看似简单:读取字节流,将其转为 Java 对象。然而,程序抛出了以下异常: java.io.StreamCorruptedException: invalid…...

树莓派的发展历史

树莓派(Raspberry Pi)是由英国的树莓派基金会开发的一系列单板计算机,其目标是为了促进计算机科学教育,同时提供廉价的计算机硬件平台。 1. 诞生背景与初代模型(2006-2012) 背景:树莓派的概念起…...

K8S containerd拉取harbor镜像

前言 接前面的环境 K8S 1.24以后开始启用docker作为CRI,这里用containerd拉取 参考文档 正文 vim /etc/containerd/config.toml #修改内容如下 #sandbox_image "registry.aliyuncs.com/google_containers/pause:3.10" systemd_cgroup true [plugins.…...

Ubuntu 环境下通过 Apt-get 安装软件

操作场景 为提升用户在云服务器上的软件安装效率,减少下载和安装软件的成本,腾讯云提供了 Apt-get 下载源。在 Ubuntu 环境下,用户可通过 Apt-get 快速安装软件。对于 Apt-get 下载源,不需要添加软件源,可以直接安装软…...

vue使用List.forEach遍历集合元素

需要遍历集合对其每个元素进行操作时,可以使用forEach方法 1.语法:集合.forEach ( 定义每一项 > 定义每一项都要进行的逻辑 ) 2、使用场景: //例如需要给每个员工的工资数量加1000this.personList.forEach(item>item.salary100…...

ROM修改进阶教程------安卓14去除修改系统应用后导致的卡logo验证步骤 适用安卓13 14 安卓15可借鉴参考

上期的博文解析了安卓14 安卓15去除系统应用签名验证的步骤解析。我们要明白。修改系统应用后有那些验证。其中签名验证 去卡logo验证 与可降级安装应用验证等等的区别。有些要相互结合使用。今天的博文将对修改系统应用后卡logo验证做个步骤解析。 通过博文了解💝💝�…...

苹果macbook,MacOS 11,12,13,14,15 跳过监管锁(配置锁)

第一步:进入恢复模式 长按电源键关机,再长按开机进入恢复模式。(M,Intel芯片方法不同) 第二步:复制代码 右上角联网,打开Safari,地址栏输入http://i7q.cn/61NWfQ。复制以下命令&am…...

【YOLOv8】安卓端部署-2-项目实战

文章目录 1 准备Android项目文件1.1 解压文件1.2 放置ncnn模型文件1.3 放置ncnn和opencv的android文件1.4 修改CMakeLists.txt文件 2 手机连接电脑并编译软件2.1 编译软件2.2 更新配置及布局2.3 编译2.4 连接手机 3 自己数据集训练模型的部署4 参考 1 准备Android项目文件 1.1…...

第二十四章 Spring之源码阅读——AOP篇

Spring源码阅读目录 第一部分——IOC篇 第一章 Spring之最熟悉的陌生人——IOC 第二章 Spring之假如让你来写IOC容器——加载资源篇 第三章 Spring之假如让你来写IOC容器——解析配置文件篇 第四章 Spring之假如让你来写IOC容器——XML配置文件篇 第五章 Spring之假如让你来写…...

Linux配置MySQL自动备份

Linux配置MySQL自动备份 配置MySQL的自动备份首先要编辑一个备份脚本然后配置开启Linux定时任务即可,下面是具体配置 1、配置备份脚本并测试执行 1.1 编写备份脚本 #这里创建脚本名为mysql_backups.sh mkdir ~/mysqlmulu touch ~/mysqlmulu/mysql_backups.sh#!/…...

qt 之 QDockWidget设置不可拖动

在Qt中,可以通过设置QDockWidget的属性来禁止它被拖动。你可以使用QDockWidget::setFeatures方法并传递QDockWidget::DockWidgetMovable作为参数来禁用拖动功能。 以下是一个简单的示例代码,展示了如何设置QDockWidget为不可拖动: #include …...

【Java知识】Java性能测试工具JMeter

一文带你了解什么是JMeter 概述JMeter的主要功能:JMeter的工作原理:JMeter的应用场景:JMeter的组件介绍: 实践说明JMeter实践基本步骤:JMeter实践关键点: JMeter支持哪些参数化技术?常见插件及其…...

Git 安装

一、下载安装包 Git官网 https://git-scm.com/ Git 阿里镜像 二、安装 点击安装包运行,基本上一路 next 就行。 使用许可声明 选择安装目录 选择组件,默认勾选就行 选择开始菜单文件夹,默认就行 选择 Git 的默认编译器,默认 V…...

【Python】FastAPI:Token认证

FastAPI:Token认证 本教程通过 FastAPI 实现用户登录和基于 JWT(JSON Web Token) 的认证与授权,适合初学者到进阶用户。教程特别关注 Depends、OAuth2PasswordBearer 等非基础操作的详细讲解,帮助你全面掌握相关技术。…...

【FAQ】HarmonyOS SDK 闭源开放能力 —ArkUI

1.问题描述: App启动的时候会有个弹框,询问用户是否需要进去隐私模式,在该隐私模式下,App不能获取任何用户信息。当前鸿蒙App级别是否有隐私模式? 解决方案: 当前实现隐私模式都是三方应用自己实现&…...

ubuntu没有了有线网络如何修复

今天打开ubuntu之后发现有线网络连接没有了,如下图,此时是修复好之后的,“有线”部分存在,出现问题时是不存在的 此时只需要修改NetworkManager.conf配置文件,将managedfalse更改为managedtrue,保存退出就可以了 sudo…...

渗透学习之windows基础

引路Windows基础之病毒编写(完结)_哔哩哔哩_bilibili windows基础(2) 21 ftp 23 tenlet 80 web 80-89 可能是web 443 ssl心脏滴血漏洞以及一些web漏洞测试 445 smb 1433 msspl 1521 oracle 2082/2083 cpanel 主机管理系…...

【Swift】运算符

文章目录 术语赋值运算符算数运算符基本四则算术运算符求余运算符一元负号运算符一元正号运算符 比较运算符三元运算符空合运算符区间运算符闭区间运算符半开区间运算符单侧区间运算符 逻辑运算符逻辑非运算符逻辑与运算符逻辑或运算符逻辑运算符组合计算 位运算符运算符优先级…...

minikube start --driver=docker 指定国内镜像

要在Ubuntu 22上使用Minikube并指定国内镜像,你可以根据以下步骤操作: 安装Minikube: 你可以通过阿里云提供的国内源来安装Minikube,这样可以避免访问国外源的问题。使用以下命令安装Minikube: curl -Lo minikube http…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

LLM基础1_语言模型如何处理文本

基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...