当前位置: 首页 > news >正文

【大模型】LLaMA: Open and Efficient Foundation Language Models

链接:https://arxiv.org/pdf/2302.13971
论文:LLaMA: Open and Efficient Foundation Language Models

Introduction

  1. 规模和效果
    7B to 65B,LLaMA-13B 超过 GPT-3 (175B)
  2. Motivation
    如何最好地缩放特定训练计算预算的数据集和模型大小,并不是模型参数越大越好,给定一个目标级别的性能,首选模型不是训练最快的而是推理最快的

Approach

  1. 预训练数据
    表中数据的混合:
    在这里插入图片描述
  • CommonCrawl数据:对数据进行重复数据删除,使用 fastText 线性分类器执行语言识别以删除非英语页面并使用 ngram 语言模型过滤低质量的内容。
  • C4:发现使用不同的预处理 CommonCrawl 数据集可以提高性能。对于质量使用启发式方法,比如标点符号和单词句子数量
  • Github:根据字母数字字符的线长或比例过滤低质量的文件,并删除带有正则表达式的样板,例如标题;在文件级别对结果数据集进行重复数据删除
  • Wikipedia:20种语言,删除超链接、评论和其他格式样板。
  • Gutenberg and Books3:两个书籍数据,书籍级别执行重复数据删除,删除内容重叠超过 90% 的书籍。
  • ArXiv:科学数据,在第一部分和书目之前删除了所有内容,删除了评论、tex 文件、以及用户编写的内联扩展定义和宏,以增加论文之间的一致性。
  • Stack Exchange:涵盖各种领域的高质量问题和答案网站,范围从计算机科学到化学,从 28 个最大的网站保留数据,从文本中删除 HTML 标签并按分数对答案进行排序
  • Tokenizer:BPE,将所有数字拆分为单个数字,并回退到字节以分解未知的 UTF-8 字符。共计1.4T tokens。
  • 训练集使用:除了 Wikipedia 和 Books 域之外,每个token在训练期间仅使用一次,执行大约两个 epoch。
  1. 结构
  • Pre-normalization(GPT-3):提高训练稳定性(后归一化是针对输出,前归一化是在每个sub-layer的输入),RMSNorm「对于 Post-LN 方式,Layer Norm 放置在 Self-Attn sub layer 和 FFN sub layer 的 output 上,实证发现会导致 output 上的梯度过大,训练时不稳定,loss 不能稳定下降;Pre-LN 方式下,梯度值则比较稳定」
    在这里插入图片描述

  • SwiGLU activation function(PaLM)
    原始的 Transformer 中 FFN layer 使用 ReLU 激活函数,如下:
    在这里插入图片描述
    对 FFN 的实现方式进行改进,可以提升 Transformer 在语言模型上的表现,主要思路是借鉴 Gated Linear Units (GLU) 的做法,并将 GLU 中的 sigmoid 激活函数更换为 Swish 激活函数。原始 GLU 的形式:
    在这里插入图片描述
    将其中的 sigmoid 激活函数σ更改为Swishβ​ 激活函数 (f(x)=x⋅sigmoid(β⋅x)),则有:
    在这里插入图片描述
    FFN 可使用 SwiGLU 替换为 (此处省略了 Bias 项):
    在这里插入图片描述

  • Rotary Embeddings [GPTNeo]:rotary positional embeddings (RoPE)
    Rope和相对位置编码相比油更好的外推性(外推性是指大模型在训练时和预测时的输入长度不一致,导致模型的泛化能力下降的问题)
    对于 token 序列中的每个词嵌入向量,首先计算其对应的 query 和 key 向量,然后对每个 token 位置都计算对应的旋转位置编码,接着对每个 token 位置的 query 和 key 向量的元素按照 两两一组 应用旋转变换,最后再计算 query 和 key 之间的内积得到 self-attention 的计算结果。
    在这里插入图片描述

  1. 优化器
    AdamW,β1 = 0.9, β2 = 0.95,cosine learning rate schedule,weight decay of 0.1 and gradient clipping of 1.0
  2. 高效实现
  • 使用因果多头注意力的有效实现来减少内存使用和运行时间,xformers library;不存储注意力权重,也不加算被mask的key/query的分数【Causal Multi-Head Attention:由于是解码器,为了保持 Left-to-Right 自回归特点而 Mask 掉的那些位置,不计算 Attention weights.】
  • 减少了在后向传递期间重新计算的激活量
  • 使用模型和序列并行性来减少模型的内存使用
  • 重叠网络上的激活和 GPU 之间的通信(由于 all_reduce 操作)
  • 训练 65B 模型,2048个80GB A100 ,380 个token/s/GPU。 1.4T token的数据集训练 21 天

Results

包括zero-shot 和 few-shot 任务,20个benchmark

  1. Common Sense Reasoning
    在这里插入图片描述
  2. 闭卷问答
    在这里插入图片描述
    在这里插入图片描述
    模型推理可以在单个v100运行
  3. 阅读理解
    在这里插入图片描述
  4. 数学推理
    Minerva 是一系列 PaLM 模型,在从 ArXiv 和 Math Web Page 中提取的 38.5B 标记上进行微调,而 PaLM 或 LLAMA 都没有在数学数据上进行微调
    在这里插入图片描述
    maj1@k 表示我们为每个问题生成 k 个样本并执行多数投票的评估
  5. 代码生成
    在这里插入图片描述
  6. 大规模多任务语言理解

在这里插入图片描述
预训练数据中使用了有限数量的书籍和学术论文

  1. 训练期间性能的演变
    在这里插入图片描述
    在这里插入图片描述

指令微调

非常少量的微调提高了 MLU 的性能,进一步提高了模型遵循指令的能力
在这里插入图片描述

偏见、有毒性和错误信息

大型语言模型已被证明可以重现和放大训练数据中存在的偏差

  1. RealToxicityPrompts基准
    RealToxicityPrompts 由模型必须完成的大约 100k 个提示组成;然后通过向 PerspectiveAPI 3 请求自动评估毒性分数(分数越高,有毒越多)
    在这里插入图片描述

  2. CrowS-Pairs
    该数据集允许测量 9 个类别中的偏见:性别、宗教、种族/颜色、性取向、年龄、国籍、残疾、身体外观和社会经济地位
    在这里插入图片描述
    分数越高Bias越大

  3. WinoGender(性别偏见)

在这里插入图片描述
4. TruthfulQA
该基准可以评估模型生成错误信息或虚假声明的风险
在这里插入图片描述
与 GPT-3 相比,LLaMA在这两个类别中得分都更高,但正确答案的比率仍然很低

总结

贡献点一:“以少胜多”

  • LLaMA-13B outperforms GPT-3-175B on most benchmarks, despite being 10× smaller;
  • LLaMA-65B is competitive with PaLM-540B;
    贡献点二:open-sourcing
  • 训练数据全都 publicly available;
  • 参数公开;

Toread:Chinchilla and PaLM

相关文章:

【大模型】LLaMA: Open and Efficient Foundation Language Models

链接:https://arxiv.org/pdf/2302.13971 论文:LLaMA: Open and Efficient Foundation Language Models Introduction 规模和效果 7B to 65B,LLaMA-13B 超过 GPT-3 (175B)Motivation 如何最好地缩放特定训练计算预算的数据集和模型大小&…...

模拟器多开限制ip,如何设置单窗口单ip,每个窗口ip不同

很多手游多开玩家都是利用安卓模拟器实现手游多开,但是很多手游会限制ip,导致多开之后封号等问题,模拟器本身没有更换IP的功能,就需要通过第三方软件来实现 安卓模拟器概述 雷电模拟器、夜神模拟器、mum模拟器等都是目前市场上比较…...

hive的存储格式

1) 四种存储格式 hive的存储格式分为两大类:一类纯文本文件,一类是二进制文件存储。 Hive支持的存储数据的格式主要有:TEXTFILE、SEQUENCEFILE、ORC、PARQUET 第一类:纯文本文件存储 textfile: 纯文本文件存储格式…...

鸿蒙学习高效开发与测试-应用程序框架(3)

文章目录 1、应用程序框架1、规范化后台进程管理2、原生支持分布式3、支持多设备的统一窗口管理4、 组件共享及面向对象5、逻辑与界面解耦6、灵活扩展机制2、HarmonyOS SDK1、 开放能力 Kit2、开放能力的检索和使用3、 方舟工具链4、前端编译器架构1、应用程序框架 应 用 程 序…...

什么命令可以查看数据库中表的结构

1. MySQL 查看表结构 sql 复制代码 DESCRIBE 表名; 或者: sql 复制代码 SHOW COLUMNS FROM 表名; 更详细的表信息 sql 复制代码 SHOW CREATE TABLE 表名; 2. PostgreSQL 查看表结构 sql 复制代码 \d 表名 列出表的字段及类型 sql 复制代码 SELECT column_name, da…...

django基于python 语言的酒店推荐系统

摘 要 酒店推荐系统旨在提供一个全面酒店推荐在线平台,该系统允许用户浏览不同的客房类型,并根据个人偏好和需求推荐合适的酒店客房。用户可以便捷地进行客房预订,并在抵达后简化入住登记流程。为了确保连续的住宿体验,系统还提供…...

【深度学习|onnx】往onnx中写入训练的超参或者类别等信息,并在推理时读取

1、往onnx中写入 在训练完毕之后,我们先使用torch.onnx.export() 导出onnx模型,然后我们再使用以下代码来往metadata中写入信息: # Metadatad {# stride: int(max(model.stride)),names: model.names,mean : [0,0,0],std : [1,1,1],normali…...

WebSocket详解、WebSocket入门案例

目录 1.1 WebSocket介绍 http协议: webSocket协议: 1.2WebSocket协议: 1.3客户端(浏览器)实现 1.3.2 WebSocket对象的相关事宜: 1.3.3 WebSOcket方法 1.4 服务端实现 服务端如何接收客户端发送的请…...

05_Spring JdbcTemplate

在继续了解Spring的核心知识前,我们先看看Spring的一个模板类JdbcTemplate,它是一个JDBC的模板类,用来简化JDBC的操作。 接下来以实际来进行说明 一、实例环境准备 数据库及表准备 我们在本地mysql中新增一个数据库test,并新增一张数据表:user create database if not…...

Bug:引入Feign后触发了2次、4次ContextRefreshedEvent

Bug:引入Feign后发现监控onApplication中ContextRefreshedEvent事件触发了2次或者4次。 【原理】在Spring的文档注释中提示到: Event raised when an {code ApplicationContext} gets initialized or refreshed.即当 ApplicationContext 进行初始化或者刷…...

最新‌VSCode保姆级安装教程(附安装包)

文章目录 一、VSCode介绍 二、VSCode下载 下载链接:https://pan.quark.cn/s/19a303ff81fc 三、VSCode安装 1.解压安装文件:双击打开并安装VSCode 2.勾选我同意协议:然后点击下一步 3.选择目标位置:点击浏览 4.选择D盘安装&…...

layui 表格点击编辑感觉很好用,实现方法如下

1. 在 HTML 页面中引入 layui 的相关资源文件&#xff1a;html <link rel"stylesheet" href"https://cdn.staticfile.org/layui/2.5.6/css/layui.css"> <script src"https://cdn.staticfile.org/layui/2.5.6/layui.js"></script&…...

三十一、构建完善微服务——API 网关

一、API 网关基础 系统拆分为微服务后&#xff0c;内部的微服务之间是互联互通的&#xff0c;相互之间的访问都是点对点的。如果外部系统想调用系统的某个功能&#xff0c;也采取点对点的方式&#xff0c;则外部系统会非常“头大”。因为在外部系统看来&#xff0c;它不需要也没…...

非对称之美(贪心)

非对称之美(贪心) import java.util.*; public class Main{public static void main(String[] arg) {Scanner in new Scanner(System.in);char[] ch in.next().toCharArray(); int n ch.length; int flag 1;for(int i 1; i < n; i) {if(ch[i] ! ch[0]) {flag …...

详细教程-Linux上安装单机版的Hadoop

1、上传Hadoop安装包至linux并解压 tar -zxvf hadoop-2.6.0-cdh5.15.2.tar.gz 安装包&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1u59OLTJctKmm9YVWr_F-Cg 提取码&#xff1a;0pfj 2、配置免密码登录 生成秘钥&#xff1a; ssh-keygen -t rsa -P 将秘钥写入认…...

C#桌面应用制作计算器进阶版01

基于C#桌面应用制作计算器做出了少量改动&#xff0c;其主要改动为新增加了一个label控件&#xff0c;使其每一步运算结果由label2展示出来&#xff0c;而当点击“”时&#xff0c;最终运算结果将由label1展示出来&#xff0c;此时label清空。 修改后运行效果 修改后全篇代码 …...

[开源] 告别黑苹果!用docker安装MacOS体验苹果系统

没用过苹果电脑的朋友可能会对苹果系统好奇&#xff0c;有人甚至会为了尝鲜MacOS去折腾黑苹果。如果你只是想体验一下MacOS&#xff0c;这里有个更简单更优雅的解决方案&#xff0c;用docker安装MacOS来体验苹果系统。 一、项目简介 项目描述 Docker 容器内的 OSX&#xff08…...

多模态大模型(4)--InstructBLIP

BLIP-2通过冻结的指令调优LLM以理解视觉输入&#xff0c;展示了在图像到文本生成中遵循指令的初步能力。然而&#xff0c;由于额外的视觉输入由于输入分布和任务多样性&#xff0c;构建通用视觉语言模型面临很大的挑战。因而&#xff0c;在视觉领域&#xff0c;指令调优技术仍未…...

【Linux】基于 Busybox 构建嵌入式 Linux(未完成)

嵌入式 Linux 1.需要 Toolchain 2.需要 Bootloader 3.需要嵌入式 Linux 基本组件&#xff1a; Linux kernelDTBRoot filesystem InitShellDaemonShared librariesConfiguration fileDevice nodeproc and sysKernel Module 基于 Busybox 构建 1.编译 Linux kernel 2.编译 …...

Unet++改进38:添加GLSA(2024最新改进方法)具有聚合和表示全局和局部空间特征的能力,这有利于分别定位大目标和小目标

本文内容:添加GLSA注意力机制 目录 论文简介 1.步骤一 2.步骤二 3.步骤三 4.步骤四 论文简介 基于变压器的模型已经被广泛证明是成功的计算机视觉任务,通过建模远程依赖关系和捕获全局表示。然而,它们往往被大模式的特征所主导,导致局部细节(例如边界和小物体)的丢失…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...

6.计算机网络核心知识点精要手册

计算机网络核心知识点精要手册 1.协议基础篇 网络协议三要素 语法&#xff1a;数据与控制信息的结构或格式&#xff0c;如同语言中的语法规则语义&#xff1a;控制信息的具体含义和响应方式&#xff0c;规定通信双方"说什么"同步&#xff1a;事件执行的顺序与时序…...

Qt学习及使用_第1部分_认识Qt---Qt开发基本流程

前言 学以致用,通过QT框架的学习,一边实践,一边探索编程的方方面面. 参考书:<Qt 6 C开发指南>(以下称"本书") 标识说明:概念用粗体倾斜.重点内容用(加粗黑体)---重点内容(红字)---重点内容(加粗红字), 本书原话内容用深蓝色标识,比较重要的内容用加粗倾…...

边缘计算设备全解析:边缘盒子在各大行业的落地应用场景

随着工业物联网、AI、5G的发展&#xff0c;数据量呈爆炸式增长。但你有没有想过&#xff0c;我们生成的数据&#xff0c;真的都要发回云端处理吗&#xff1f;其实不一定。特别是在一些对响应时间、网络带宽、数据隐私要求高的行业里&#xff0c;边缘计算开始“火”了起来&#…...

【Docker 02】Docker 安装

&#x1f308; 一、各版本的平台支持情况 ⭐ 1. Server 版本 Server 版本的 Docker 就只有个命令行&#xff0c;没有界面。 Platformx86_64 / amd64arm64 / aarch64arm(32 - bit)s390xCentOs√√Debian√√√Fedora√√Raspbian√RHEL√SLES√Ubuntu√√√√Binaries√√√ …...