神经网络反向传播算法公式推导
要推导反向传播算法,并了解每一层的参数梯度如何计算,以及每一层的梯度受到哪些值的影响,我们使用一个简单的神经网络结构:
- 输入层有2个节点
- 一个有2个节点的隐藏层,激活函数是ReLU
- 一个输出节点,激活函数是线性激活(即没有激活函数)
假设权重矩阵和偏置如下:
- 输入层到隐藏层的权重矩阵 W 1 W_1 W1是 2 × 2 2 \times 2 2×2
- 隐藏层的偏置向量 b 1 b_1 b1是 2 × 1 2 \times 1 2×1
- 隐藏层到输出层的权重矩阵 W 2 W_2 W2是 2 × 1 2 \times 1 2×1
- 输出层的偏置向量 b 2 b_2 b2是一个标量
输入为 x = [ x 1 , x 2 ] x = [x_1, x_2] x=[x1,x2],期望输出为 y y y,损失函数为均方误差(MSE)。
前向传播:
- 计算隐藏层的输入:
z 1 = W 1 ⋅ x + b 1 z_1 = W_1 \cdot x + b_1 z1=W1⋅x+b1 - 计算隐藏层的激活:
a 1 = ReLU ( z 1 ) a_1 = \text{ReLU}(z_1) a1=ReLU(z1) - 计算输出层的输入:
z 2 = W 2 T ⋅ a 1 + b 2 z_2 = W_2^T \cdot a_1 + b_2 z2=W2T⋅a1+b2 - 输出值:
y ^ = z 2 \hat{y} = z_2 y^=z2 - 计算损失:
L = 1 2 ( y ^ − y ) 2 L = \frac{1}{2} (\hat{y} - y)^2 L=21(y^−y)2
反向传播:
-
计算输出层的梯度:
- 损失函数对输出层输入的梯度:
∂ L ∂ z 2 = y ^ − y \frac{\partial L}{\partial z_2} = \hat{y} - y ∂z2∂L=y^−y
- 损失函数对输出层输入的梯度:
-
计算从输出层到隐藏层的梯度:
- 隐藏层激活对权重的梯度:
∂ L ∂ W 2 = ∂ L ∂ z 2 ⋅ a 1 \frac{\partial L}{\partial W_2} = \frac{\partial L}{\partial z_2} \cdot a_1 ∂W2∂L=∂z2∂L⋅a1 - 隐藏层激活对偏置的梯度:
∂ L ∂ b 2 = ∂ L ∂ z 2 \frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial z_2} ∂b2∂L=∂z2∂L
- 隐藏层激活对权重的梯度:
-
计算隐藏层的梯度:
- 损失函数对隐藏层激活的梯度:
∂ L ∂ a 1 = W 2 ⋅ ∂ L ∂ z 2 \frac{\partial L}{\partial a_1} = W_2 \cdot \frac{\partial L}{\partial z_2} ∂a1∂L=W2⋅∂z2∂L - 隐藏层对隐藏层输入的梯度(ReLU的梯度):
∂ L ∂ z 1 = ∂ L ∂ a 1 ⋅ ReLU ′ ( z 1 ) \frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial a_1} \cdot \text{ReLU}'(z_1) ∂z1∂L=∂a1∂L⋅ReLU′(z1)- ReLU梯度 ReLU ′ ( z 1 ) \text{ReLU}'(z_1) ReLU′(z1)在 z 1 > 0 z_1 > 0 z1>0时为1,否则为0
- 损失函数对隐藏层激活的梯度:
-
计算从输入层到隐藏层的梯度:
- 输入对权重的梯度:
∂ L ∂ W 1 = ∂ L ∂ z 1 ⋅ x T \frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial z_1} \cdot x^T ∂W1∂L=∂z1∂L⋅xT - 输入对偏置的梯度:
∂ L ∂ b 1 = ∂ L ∂ z 1 \frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial z_1} ∂b1∂L=∂z1∂L
- 输入对权重的梯度:
详细推导实例:
假设:
- x = [ 1 , 2 ] x = [1, 2] x=[1,2]
- y = 3 y = 3 y=3
- W 1 = [ 0.5 0.2 0.3 0.7 ] W_1 = \begin{bmatrix} 0.5 & 0.2 \\ 0.3 & 0.7 \end{bmatrix} W1=[0.50.30.20.7]
- b 1 = [ 0.1 0.2 ] b_1 = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix} b1=[0.10.2]
- W 2 = [ 0.6 0.9 ] W_2 = \begin{bmatrix} 0.6 \\ 0.9 \end{bmatrix} W2=[0.60.9]
- b 2 = 0.3 b_2 = 0.3 b2=0.3
前向传播:
1.
z 1 = W 1 ⋅ x + b 1 = [ 0.5 0.2 0.3 0.7 ] ⋅ [ 1 2 ] + [ 0.1 0.2 ] = [ 1.0 1.9 ] z_1 = W_1 \cdot x + b_1 = \begin{bmatrix} 0.5 & 0.2 \\ 0.3 & 0.7 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 1.0 \\ 1.9 \end{bmatrix} z1=W1⋅x+b1=[0.50.30.20.7]⋅[12]+[0.10.2]=[1.01.9]
2.
a 1 = ReLU ( z 1 ) = ReLU ( [ 1.0 1.9 ] ) = [ 1.0 1.9 ] a_1 = \text{ReLU}(z_1) = \text{ReLU}(\begin{bmatrix} 1.0 \\ 1.9 \end{bmatrix}) = \begin{bmatrix} 1.0 \\ 1.9 \end{bmatrix} a1=ReLU(z1)=ReLU([1.01.9])=[1.01.9]
3.
z 2 = W 2 T ⋅ a 1 + b 2 = [ 0.6 0.9 ] T ⋅ [ 1.0 1.9 ] + 0.3 = 2.46 z_2 = W_2^T \cdot a_1 + b_2 = \begin{bmatrix} 0.6 \\ 0.9 \end{bmatrix}^T \cdot \begin{bmatrix} 1.0 \\ 1.9 \end{bmatrix} + 0.3 = 2.46 z2=W2T⋅a1+b2=[0.60.9]T⋅[1.01.9]+0.3=2.46
4.
y ^ = z 2 = 2.46 \hat{y} = z_2 = 2.46 y^=z2=2.46
5.
L = 1 2 ( 2.46 − 3 ) 2 = 0.1458 L = \frac{1}{2} (2.46 - 3)^2 = 0.1458 L=21(2.46−3)2=0.1458
反向传播:
1.
∂ L ∂ z 2 = 2.46 − 3 = − 0.54 \frac{\partial L}{\partial z_2} = 2.46 - 3 = -0.54 ∂z2∂L=2.46−3=−0.54
-
∂ L ∂ W 2 = [ − 0.54 ] ⋅ [ 1.0 1.9 ] = [ − 0.54 ⋅ 1.0 − 0.54 ⋅ 1.9 ] = [ − 0.54 − 1.026 ] \frac{\partial L}{\partial W_2} = \begin{bmatrix} -0.54 \end{bmatrix} \cdot \begin{bmatrix} 1.0 \\ 1.9 \end{bmatrix} = \begin{bmatrix} -0.54 \cdot 1.0 \\ -0.54 \cdot 1.9 \end{bmatrix} = \begin{bmatrix} -0.54 \\ -1.026 \end{bmatrix} ∂W2∂L=[−0.54]⋅[1.01.9]=[−0.54⋅1.0−0.54⋅1.9]=[−0.54−1.026]
∂ L ∂ b 2 = − 0.54 \frac{\partial L}{\partial b_2} = -0.54 ∂b2∂L=−0.54 -
∂ L ∂ a 1 = [ 0.6 0.9 ] ⋅ − 0.54 = [ − 0.324 − 0.486 ] \frac{\partial L}{\partial a_1} = \begin{bmatrix} 0.6 \\ 0.9 \end{bmatrix} \cdot -0.54 = \begin{bmatrix} -0.324 \\ -0.486 \end{bmatrix} ∂a1∂L=[0.60.9]⋅−0.54=[−0.324−0.486]
∂ L ∂ z 1 = ∂ L ∂ a 1 ⋅ ReLU ′ ( z 1 ) = [ − 0.324 − 0.486 ] ⋅ [ 1 1 ] = [ − 0.324 − 0.486 ] \frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial a_1} \cdot \text{ReLU}'(z_1) = \begin{bmatrix} -0.324 \\ -0.486 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.324 \\ -0.486 \end{bmatrix} ∂z1∂L=∂a1∂L⋅ReLU′(z1)=[−0.324−0.486]⋅[11]=[−0.324−0.486] -
∂ L ∂ W 1 = ∂ L ∂ z 1 ⋅ x T = [ − 0.324 − 0.486 ] ⋅ [ 1 2 ] T = [ − 0.324 − 0.648 − 0.486 − 0.972 ] \frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial z_1} \cdot x^T = \begin{bmatrix} -0.324 \\ -0.486 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \end{bmatrix}^T = \begin{bmatrix} -0.324 & -0.648 \\ -0.486 & -0.972 \end{bmatrix} ∂W1∂L=∂z1∂L⋅xT=[−0.324−0.486]⋅[12]T=[−0.324−0.486−0.648−0.972]
∂ L ∂ b 1 = [ − 0.324 − 0.486 ] \frac{\partial L}{\partial b_1} = \begin{bmatrix} -0.324 \\ -0.486 \end{bmatrix} ∂b1∂L=[−0.324−0.486]
从上述示例可以看到,每层的梯度依赖于上一层的激活值和当前层的损失梯度。梯度的传递通过链式法则一步步向前传播,从最初的损失函数计算开始,直到最终的输入层的权重和偏置。
相关文章:
神经网络反向传播算法公式推导
要推导反向传播算法,并了解每一层的参数梯度如何计算,以及每一层的梯度受到哪些值的影响,我们使用一个简单的神经网络结构: 输入层有2个节点一个有2个节点的隐藏层,激活函数是ReLU一个输出节点,激活函数是…...
Spark SQL 之 QueryStage
ExchangeQueryStageExec ExchangeQueryStageExec 分为两种...
【shodan】(三)vnc漏洞利用
shodan基础(三) 声明:该笔记为up主 泷羽的课程笔记,本节链接指路。 警告:本教程仅作学习用途,若有用于非法行为的,概不负责。 count count命令起到一个统计计数的作用。 用上节的漏洞指纹来试…...
每日OJ_牛客_游游的字母串_枚举_C++_Java
目录 牛客_游游的字母串_枚举 题目解析 C代码 Java代码 牛客_游游的字母串_枚举 游游的字母串 描述: 对于一个小写字母而言,游游可以通过一次操作把这个字母变成相邻的字母。a和b相邻,b和c相邻,以此类推。特殊的࿰…...
51c深度学习~合集8
我自己的原文哦~ https://blog.51cto.com/whaosoft/12491632 #patchmix 近期中南大学的几位研究者做了一项对比学习方面的工作——「Inter-Instance Similarity Modeling for Contrastive Learning」,主要用于解决现有对比学习方法在训练过程中忽略样本间相似关系…...
嵌入式:Flash的分类以及Jlink/J-flash的编程支持
相关阅读 嵌入式https://blog.csdn.net/weixin_45791458/category_12768532.html?spm1001.2014.3001.5482 常见的Flash大致可以分为以下大类: Serial Nor FlashSerial Nand FlashParallel Nor FlashParallel Nand FlashSerial EEPROM Serial Nor Flash 介绍 Se…...
【爬虫】Firecrawl对京东热卖网信息爬取(仅供学习)
项目地址 GitHub - mendableai/firecrawl: 🔥 Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with a single API. Firecrawl更多是使用在LLM大模型知识库的构建,是大模型数据准备中的一环(在…...
遗传算法(Genetic Algorithm, GA)
简介 遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的优化算法,由 John Holland 于20世纪70年代提出。它是一种模拟生物进化过程的启发式搜索算法,被广泛应用于函数优化、机器学习、调度问题等领域。 代码说明 …...
【二分答案+倍增快速幂】课堂练习
P1678 烦恼的高考志愿 #include<bits/stdc.h> using namespace std; const int N1e55; int n,m,a[N];long long bs(int x){int l1,rn;while(l<r){int midlr>>1;if(a[mid]x) return 0;if(a[mid]>x) rmid-1;else lmid1;}//根据前驱后继返回最小差值//printf(&…...
LeetCode 力扣 热题 100道(九)反转链表(C++)
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 方法一:迭代法 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNod…...
Linux之网络基础
网络发展 网络的发展可以从人与人之间的工作模式开始谈起, 人与人的工作模式反应了机器与机器的工作模式: 1. 独立模式: 在网络发展的早期计算机间处于独立模式, 计算机之间相互独立 最开始计算机之间是独立运行的, 数据之间的交互需要人用软盘等存储介质拷贝过去, 一般涉及…...
Oracle收缩表空间的简单方法
在Oracle数据库中,收缩表空间是一种常见的维护操作,可以回收未使用的空间,减少表空间的碎片,提高性能。以下是一些步骤和方法: 1. 识别未使用的空间 首先,需要识别表空间中未使用的空间。可以通过查询 DB…...
C++设计模式行为模式———中介者模式
文章目录 一、引言二、中介者模式三、总结 一、引言 中介者模式是一种行为设计模式, 能让你减少对象之间混乱无序的依赖关系。 该模式会限制对象之间的直接交互, 迫使它们通过一个中介者对象进行合作。 中介者模式可以减少对象之间混乱无序的依赖关系&…...
YB2503HV:高效率降压IC,助力电动车、太阳能设备等领域的能源转换
今天我要向大家介绍一款引人注目的产品—— YB2503HV 100V 3A SOP8内置MOS 高效率降压IC。这款单片集成芯片具备可设定输出电流的开关型降压恒压驱动器功能,可广泛应用于电动车、太阳能设备、电子电池充电等领域。让我们一起来看看它的特点和应用吧! 首先…...
如何使用Jest测试你的React组件
在本文中,我们将了解如何使用Jest(Facebook 维护的一个测试框架)来测试我们的React组件。我们将首先了解如何在纯 JavaScript 函数上使用 Jest,然后再了解它提供的一些开箱即用的功能,这些功能专门用于使测试 React 应…...
微网能量管理研究
微网能量管理研究的重点 微网系统的建模 建立分布式能源单元模型以及微网系统的整体运行、协调控制和优化配置等方面的模型 分布式电源控制策略 微网内分布式电源及储能系统运行依赖于电力电子接口技术,需要相应的充放电控制策略 再生能源发电预测 准确预测太阳能…...
Java基础面试题02:简述什么是值传递和引用传递?
面试题:简述什么是值传递和引用传递? 什么是值传递? 值传递(pass by value)是指在调用函数时,把实际参数的值复制一份传递给函数。换句话说,函数内部对参数的任何修改,都不会影响到…...
【STL】10.set与map的模拟实现
一、源码及框架分析 SGI-STL30版本源代码,map和set的源代码在map/set/stl_map.h/stl_set.h/stl_tree.h等及个头文件中。 map和set的实现结构框架核心部分截取出来如下: // set #ifndef __SGI_STL_INTERNAL_TREE_H #include <stl_tree.h> #endif …...
Playwright(Java版) - 8: Playwright 元素交互的高级应用
在自动化测试中,处理复杂的页面交互是常见的需求。例如,应对动态加载的元素、处理弹窗与对话框、模拟拖放操作,甚至在绘图板上进行绘图操作。 1 动态元素与弹窗处理 1.1 动态元素的加载与等待 动态页面可能会导致元素在操作时尚未完全加载&…...
播放器开发之ffmpeg 硬件解码方案
硬件编解码的概念 硬件编解码是⾮CPU通过烧写运⾏视频加速功能对⾼清视频流进⾏编解码,其中⾮CPU可包括GPU、FPGA或者 ASIC等独⽴硬件模块,把CPU⾼使⽤率的视频解码⼯作从CPU⾥分离出来,降低CPU的使⽤负荷,使得平台能 ⾼效且流畅…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...
